Skip to main content
Log in

On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

or the second-order differential equation ẍ + f(t) ẋ + g(t)x = 0, the method of Lyapunov functions is used to obtain sufficient conditions for the existence of homoclinic trajectories, i.e., solutions x(t), ẋ (t) satisfying the conditions limt→±∞x(t) = 0 and limt→±∞ẋ (t) = 0. The specific case in which all the solutions of this differential equation are homoclinic is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Poincaré, OEuvres, Tome VII: Masses fluides en rotation. Principes de mécanique analytique. Problème des trois corps (Editions Jacques Gabay, Sceaux, 1996).

    MATH  Google Scholar 

  2. L. P. Shil’nikov, “Homoclinic trajectories: From Poincaréto our days,” Mat. Vyssh. Obraz. 5, 75–94 (2007).

    Google Scholar 

  3. V. K. Mel’nikov, “On the stability of a center for time-periodic perturbations,” in Tr. Mosk. Mat. Obs. (GIFML, Moscow, 1963), Vol. 12, pp. 3–52 [in Russian].

    Google Scholar 

  4. T. M. Cherry, “Asymptotic solutions of analytic Hamiltonian systems,” J. Differential Equations 4 (2), 142–159 (1968).

    Article  MathSciNet  Google Scholar 

  5. R. P. Agarwal, A. Aghajani, and V. Roomi, “Existence of homoclinic orbits for general planer dynamical systems of Liénard type,” Dyn. Contin. Discrete Impuls. Syst. Ser. AMath. Anal. 18 (2), 267–284 (2012).

    MATH  Google Scholar 

  6. A. F. Vakakis and M. F. A. Azeez, “Analytic approximation of the homoclinic orbits of Lorenz system at σ= 10, b = 8/3 and ρ= 13. 926 …,” Nonlinear Dynam. 15 (3), 245–257 (1998).

    Article  MathSciNet  Google Scholar 

  7. L. A. Peletier and J. A. Rodriguez, “Homoclinic orbits to a saddle-center in a fourth-order differential equation,” J. Differential Equations 203 (2), 185–215 (2004).

    Article  MathSciNet  Google Scholar 

  8. J. B. Berg, M. Breden, J.-P. Lessard, and M. Murray, “Continuation homoclinic orbits in the suspension bridge equation: a computer-assisted proof,” J. Differential Equations 264 (5), 3086–3130 (2018).

    Article  MathSciNet  Google Scholar 

  9. Y. Ding, “Solutions to the class of Schrö dinger equations,” Proc. Amer. Math. Soc. 130 (3), 689–696 (2002).

    Article  MathSciNet  Google Scholar 

  10. P. H. Rabinowitz, “Homoclinic orbits for the class of Hamiltonian systems,” Proc. Roy. Soc. Edinburgh Sec. A 114 (1-2), 33–38 (1990).

    Article  MathSciNet  Google Scholar 

  11. C. O. Alves, P. C. Carriao, and O. H. Miyagaki, “Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation,” Appl. Math. Lett. 16 (5), 639–642 (2003).

    Article  MathSciNet  Google Scholar 

  12. P. Bartolo, V. Benci, and D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity,” Nonlinear Anal. 7 (9), 981–1012 (1983).

    Article  MathSciNet  Google Scholar 

  13. W. Omana and M. Willem, “Homoclinic orbits for the class of Hamiltonian systems,” Diff. Int. Equa. 5 (5), 1115–1120 (1992).

    MathSciNet  MATH  Google Scholar 

  14. Z. Q. Qu and C. L. Tang, “Existence of homoclinic orbits for the second orderHamiltonian systems,” J. Math. Anal. Appl. 291 (1), 203–213 (2004).

    Article  MathSciNet  Google Scholar 

  15. X. H. Tang and X. Lin, “Homoclinic solutions for the class of second-order Hamiltonian systems,” J. Math. Anal. Appl. 354 (2), 539–549 (2009).

    Article  MathSciNet  Google Scholar 

  16. X. H. Tang and L. Xiao, “Homoclinic solutions for the class of second-orderHamiltonian systems,” Nonlinear Anal. 71 (3-4), 1140–1152 (2009).

    Article  MathSciNet  Google Scholar 

  17. R. Yuan and Z. Zhang, “Homoclinic solutions for the class of second order non-autonomous systems,” Electron. J. Differential Equations 128, 1–9 (2009).

    MathSciNet  Google Scholar 

  18. Z. Zhang, “Existence of homoclinic solutions for second orderHamiltonian systems with general potentials,” J. Appl. Math. Comput. 44 (1-2), 263–272 (2014).

    Article  MathSciNet  Google Scholar 

  19. M. Izydorek and J. Janczewska, “Homoclinic solutions for the class of second order Hamiltonian systems,” J. Differential Equations 219 (2), 375–389 (2005).

    Article  MathSciNet  Google Scholar 

  20. C. C. Yin and F. B. Zhang, “Homoclinic orbits for the second-order Hamiltonian systems with obstacle item,” Sci. ChinaMath. 53 (11), 3005–3014 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Ignatyev.

Additional information

Russian Text © The Author(s), 2020, published in Matematicheskie Zametki, 2020, Vol. 107, No. 3, pp. 391-399.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatyev, A.O. On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations. Math Notes 107, 435–441 (2020). https://doi.org/10.1134/S0001434620030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620030074

Keywords

Navigation