Skip to main content
Log in

The Extended Legendre Transform and Related Variational Principles

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Variational principles for functionals on the space C(X) of continuous functions that can be written as a representation of a functional in the form of the Legendre transform of the dual functional are considered. The formula of the Legendre transform determines a functional on wider sets of functions, and this functional is called the extended Legendre transform. Functionals that can be represented in the form of the extended Legendre transform are described. Applications to the problem of finding the spectral radius of functional operators are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Magaril-Il’yaev and V. M. Tikhomirov, Convex Analysis and Its Applications (Editorial URSS, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  2. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (Elsevier, Amsterdam, 1976; Mir, Moscow, 1979).

  3. A. B. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1995; Faktorial, Moscow, 1999).

    MATH  Google Scholar 

  4. A. B. Antonevich, “On Extension of the Legendre transform,” in Geometric Methods in Physics, Pro ceedings of the XXVIII Workshop on Geometric Methods in Physics, Bialowieza, Poland, 28 June - 4 July 2009 (Amer. Inst. of Phys., Melville, New York, 2009), pp. 1-6.

    Google Scholar 

  5. A. B. Antonevich, Linear Functional Equations. An Operator Approach (Universitetskoe, Minsk, 1988) [in Russian].

    MATH  Google Scholar 

  6. A. Antonevich and A. Lebedev, Functional Differential Equations. I. C*-Theory (Longman Sci. and Tech., Harlow, 1994).

    MATH  Google Scholar 

  7. H. Kesten, “Symmetric random walks on groups,” Trans. Amer. Math. Soc. 92, 336–354 (1959).

    Article  MathSciNet  Google Scholar 

  8. R. I. Grigorchuk, “Symmetric random walks on discrete groups,” in Multicomponent Random Systems (Nauka, Moscow, 1978), pp. 132–152 [in Russian].

    Google Scholar 

  9. Yu. D. Latushkin and A. M. Stepin, “Weighted shift operator on a topological Markov chain,” Funktsional. Anal. Prilozhen. 22 (4), 86–87 (1988) [Functional Anal. Appl. 22 (4), 330-331 (1988)].

    MathSciNet  MATH  Google Scholar 

  10. A. B. Antonevich, V. I. Bakhtin, and A. V. Lebedev, “On entropy and variational principle for the spectral radius of transfer and weighted shift operators,” Ergodic Theory Dynam. Systems 31 (4), 995–1042 (2011).

    Article  MathSciNet  Google Scholar 

  11. A. B. Antonevich, V. I. Bakhtin, and A. V. Lebedev, “A road to the spectral radius of transfer operators,” in Dynamical Systems and Group Actions, Contemp. Math. (Amer. Math. Soc, Providence, RI, 2012), Vol. 567, pp. 17–51.

    Article  MathSciNet  Google Scholar 

  12. A. B. Antonevich and K. Zaikovskii, “Variational principles for the spectral radius of functional operators,” Mat. Sb. 197 (5), 3–50 (2006) [Sb. Math. 197 (5), 633-680 (2006)].

    Article  MathSciNet  Google Scholar 

  13. U. Ostashewska and K. Zajkowski, “Legendre-Fenchel transform of the spectral exponent of polynomials of weighted composition operators,” Positivity 14 (3), 373–381 (2010).

    Article  MathSciNet  Google Scholar 

  14. U. Ostashewska and K. Zajkowski, “Variational principle for the the spectral exponent of polynomials of weighted composition operators,” J. Math. Anal. Appl. 361 (1), 246–251 (2010).

    Article  MathSciNet  Google Scholar 

  15. U. Ostashewska and K. Zajkowski, “Legendre-Fenchel transform of the spectral exponent of analytic functions of weighted composition operators,” J. Convex Analysis 18 (2), 367–377 (2011).

    MathSciNet  MATH  Google Scholar 

  16. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  17. I. P. Kornfel’d, Ya. G. Sinai, and S. V. Fomin, Ergodic Theory (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  18. A. N. Glaz, “Irrational rotation operator whose spetrum is a ring,” Izv. Gomel. Gos. Univ., Ser. Estestv. Nauki 84 (3), 40–45 (2014).

    Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Heidelberg, 1966; Mir, Moscow, 1972).

    Google Scholar 

  20. A. B. Antonevich, “On variations in the spectrum for small perturbations of the operator,” Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz., Mat, Inf., No. 3, 60–62 (1976).

    Google Scholar 

  21. E. Yu. Leonova, “Uniqueness sets of extension of a positive linear bounded functional on the space C(X),” Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz.,Mat, Inf., No. 2, 121–127 (2012).

    Google Scholar 

  22. E. Yu. Leonova, “Multiplicative upper semicontinuous functionals on the semigroup of negative functions,” Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz.,Mat, Inf., No. 3, 103–110 (2015).

    Google Scholar 

  23. E. Yu. Leonova, “Continuity criteria for the geometric mean on the semigroup of nonnegative functions,” Vestn. Grodn. Gos. Univim. Yanki Kipaly, Ser. 2: Mat., Fiz., Inf. 6 (1), 55–63 (2016).

    Google Scholar 

  24. A. B. Antonevich and E. Yu. Leonova, “Extension of the Legendre transform on C(X) and its applications,” Tr. Inst. Mat. Nats. Akad. Nauk Belarusi 24 (2), 3–13 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Antonevich or E. Yu. Leonova.

Additional information

Russian Text © The Author(s), 2020, published in Matematicheskie Zametki, 2020, Vol. 107, No. 3, pp. 323–340.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonevich, A.B., Leonova, E.Y. The Extended Legendre Transform and Related Variational Principles. Math Notes 107, 369–382 (2020). https://doi.org/10.1134/S0001434620030013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620030013

Keywords

Navigation