Skip to main content
Log in

Chromatic Numbers of Some Distance Graphs

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For positive integers n > r > s, G(n, r, s) is the graph whose vertices are the r-element subsets of an n-element set, two subsets being adjacent if their intersection contains exactly s elements. We study the chromatic numbers of this family of graphs. In particular, the exact value of the chromatic number of G(n, 3, 2) is found for infinitely many n. We also improve the best known upper bounds for chromatic numbers for many values of the parameters r and s and for all sufficiently large n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I (North-Holland Publ., Amsterdam, 1977).

    MATH  Google Scholar 

  2. Z. Nagy, “A certain constructive estimate of the Ramsey number,” Mat. Lapok 23, 301–302 (1972).

    MathSciNet  Google Scholar 

  3. P. Frankl and R. Wilson, “Intersection theorems with geometric consequences,” Combinatorica 1 (4), 357–368 (1981).

    Article  MathSciNet  Google Scholar 

  4. A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in Discrete Geometry and Algebraic Combinatorics, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2014), Vol. 625, pp. 93–109.

    Google Scholar 

  5. A. M. Raigorodskii, “Coloring Distance Graphs and Graphs of Diameters,” in Thirty Essays on Geometric Graph Theory (Springer, New York, 2013), pp. 429–460.

    Chapter  Google Scholar 

  6. B. Bollobás, B. P. Narayanan, and A. M. Raigorodskii, “On the stability of the Erdős—Ko—Rado theorem,” J. Combin.Theory Ser. A 137, 64–78 (2016).

    Article  MathSciNet  Google Scholar 

  7. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, “Asymptotic study of the maximum number of edges in a uniform hypergraph with one forbidden intersection,” Mat. Zametki 207 (5), 17–42 (2016).

    MathSciNet  MATH  Google Scholar 

  8. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, Math. Notes 207 (5), 652–677 (2016).

    Google Scholar 

  9. A. M. Raigorodskii, “Combinatorial geometry and coding theory,” Fund. Inform. 145 (3), 359–369 (2016).

    Article  MathSciNet  Google Scholar 

  10. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, “On the maximal number of edges in a uniform hypergraph with one forbidden intersection,” Dokl. Akad. Nauk 463 (1), 11–13 (2015).

    MATH  Google Scholar 

  11. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, Dokl. Math. 92 (1), 401–403 (2015).

    Article  MathSciNet  Google Scholar 

  12. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, “On the number of edges of a uniform hypergraph with a range of allowed intersections,” Problemy Peredachi Informatsii 53 (4), 16–42 (2017).

    MathSciNet  MATH  Google Scholar 

  13. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, Probl. Inform. Transm. 53 (4), 319–342 (2017).

    Article  Google Scholar 

  14. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, “On the number of edges in a uniform hypergraph with a range of permitted intersections,” Dokl. Akad. Nauk 475 (4), 365–368 (2017).

    MATH  Google Scholar 

  15. A. V. Bobu, A. E. Kupriyanov, and A. M. Raigorodskii, Dokl. Math. 96 (1), 354–357 (2017).

    Article  MathSciNet  Google Scholar 

  16. R. I. Prosanov, A. A. Sagdeev, and A. M. Raigorodskii, “Improvements of the Frankl—Rödl theorem and geometric consequences,” Dokl. Akad. Nauk 475 (2), 137–139 (2017).

    MATH  Google Scholar 

  17. R. I. Prosanov, A. A. Sagdeev, and A. M. Raigorodskii, Dokl. Math. 96 (1), 336–338 (2017).

    Article  MathSciNet  Google Scholar 

  18. D. Cherkashin, A. Kulikov and A. Raigorodskii, “On the chromatic numbers of small-dimensional Euclidean spaces,” Discrete Appl. Math. 243, 125–131 (2018).

    Article  MathSciNet  Google Scholar 

  19. L. I. Bogolyubskii, A. S. Gusev, M. M. Pyaderkin, and A. M. Raigorodskii, “Independence numbers and chromatic numbers of the random subgraphs of some distance graphs,” Mat. Sb. 206 (10), 3–36 (2015).

    Article  MathSciNet  Google Scholar 

  20. L. I. Bogolyubskii, A. S. Gusev, M. M. Pyaderkin, and A. M. Raigorodskii, Sb. Math. 206 (10), 1340–1374 (2015).

    Article  MathSciNet  Google Scholar 

  21. A. V. Bobu, O. A. Kostina, and A. E. Kupriyanov, “Independence numbers and chromatic numbers of some distance graphs,” Problemy Peredachi Informatsii 51 (2), 86–98 (2015).

    MathSciNet  MATH  Google Scholar 

  22. A. V. Bobu, O. A. Kostina, and A. E. Kupriyanov, Probl. Inform. Transm. 51 (2), 165–176 (2015).

    Article  Google Scholar 

  23. M. M. Pyaderkin, “Independence numbers of random subgraphs of distance graphs,” Mat. Zametki 99 (4), 564–573 (2016).

    Article  MathSciNet  Google Scholar 

  24. M. M. Pyaderkin, Math. Notes 99 (4), 556–563 (2016).

    Article  MathSciNet  Google Scholar 

  25. J. Balogh, A. Kostochka, and A. Raigorodskii, “Coloring some finite sets in ℝn,” Discuss. Math. Graph Theory 33 (1), 25–31 (2013).

    Article  MathSciNet  Google Scholar 

  26. R. C. Baker, G. Harman, and J. Pintz, “The difference between consecutive primes. II,” Proc. London Math. Soc. (3) 83 (3), 532–562 (2001).

    Article  MathSciNet  Google Scholar 

  27. H. Cramer, “Some theorems concerning prime numbers,” Ark. Mat., Astron. Fys. 15 (5) (1921).

  28. I. M. Vinogradov, Foundations of Number Theory (“Regular and Chaotic Dynamics,” Moscow—Izhevsk, 2003) [in Russian].

    Google Scholar 

  29. R. C. Bose and S. Chowla, “Theorems in the additive theory of numbers,” Comment. Math. Helv. 37, 141–147 (1962).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zakharov.

Additional information

Russian Text © The Author(s), 2020, published in Matematicheskie Zametki, 2020, Vol. 107, No. 2, pp. 210–220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, D.A. Chromatic Numbers of Some Distance Graphs. Math Notes 107, 238–246 (2020). https://doi.org/10.1134/S000143462001023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143462001023X

Keywords

Navigation