Skip to main content
Log in

On a Property of Rearrangement Invariant Spaces whose Second Köthe Dual is Nonseparable

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We study the family of rearrangement invariant spaces E containing subspaces on which the E-norm is equivalent to the L1-norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space E can be equipped with an equivalent norm with respect to which E contains a nonzero function orthogonal to the separable part of E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Krein, Ju. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators (Nauka, Moscow, 1978; Am. Math. Soc., Providence, RI, 2002).

    Google Scholar 

  2. E. V. Tokarev, “Subspaces of certain rearrangement invariant spaces,” in Teor. Funktsii Funktsional. Anal. iPrilozhen, Vol. 24 (Kharkov, 1975), pp. 156–161.

    Google Scholar 

  3. M. I. Kadec and A. Pełczyński, “Bases, lacunary sequences and complemented subspaces in the spaces Lp,” Studia Math. 21, 161–176 (1962).

    Article  Google Scholar 

  4. S. Ya. Novikov, E. M. Semenov, and E. V. Tokarev, “The structure of subspaces of the space Λp(φ),” Dokl. Akad. Nauk SSSR 247 (3), 552–554 (1979).

    MathSciNet  Google Scholar 

  5. S. Ya. Novikov, E. M. Semenov, and E. V. Tokarev, Soviet Math. Dokl. 20, 760–761 (1979).

    Google Scholar 

  6. S. Ya. Novikov, E. M. Semenov, and E. V. Tokarev, “The structure of subspaces of the spaces Λp(μ),” in Teor. Funktsii Funktsional. Anal. i Prilozhen, Vol. 42 (Kharkov, 1984), pp. 91–97.

  7. T. Figiel, W. B. Johnson, and L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces,” J. Approximation Theory 13, 395–412 (1975).

    Article  MathSciNet  Google Scholar 

  8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces (Springer-Verlag, Berlin, 1979).

    Book  Google Scholar 

  9. F. Albiac and N. J. Kalton, Topics in Banach Space Theory, in Grad. Texts in Math. (Springer, New York, 2006), Vol. 233.

    MATH  Google Scholar 

  10. S. V. Astashkin, “Λ(p)-spaces,” J. Funct. Anal. 266 (8), 5174–5198 (2014).

    Article  MathSciNet  Google Scholar 

  11. S. Ya. Novikov, Geometric Properties of Symmetric Spaces, Cand. Sci. (Phys.–Math.) Dissertation (Voronezh, 1980) [in Russian].

  12. C. Bennett and R. Sharpley, Interpolation of Operators, in Pure Appl. Math. (Academic Press, Boston, 1988), Vol. 129.

    Google Scholar 

  13. S. V. Astashkin, Rademacher System in Function Spaces (Fizmatlit, Moscow, 2017) [in Russian].

    MATH  Google Scholar 

  14. G. Ya. Lozanovskii, “Projectors in certain Banach lattices,” Mat. Zametki 4 (1), 41–44 (1968).

    MathSciNet  Google Scholar 

  15. G. Ya. Lozanovskii, Math. Notes 4 (1), 514–516 (1968).

    Article  Google Scholar 

  16. P. P. Zabreiko, “Ideal function spaces. I,” Vestn. Yaroslavl. Gos. Univ., No. 8, 12–52 (1974).

  17. S. V. Astashkin and F. A. Sukochev, “Sequences of independent identically distributed functions in rearrangement invariant spaces,” in Banach Center Publ., Vol. 79: Function Spaces VIII (Polish Acad. Sci. Inst. Math., Warszawa, 2008), pp. 27–37.

    Google Scholar 

  18. N. N. Vakhaniya, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions in Banach Spaces (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  19. D. J. Aldous and D. H. Fremlin, “Colacunary sequences in L-spaces,” Stud. Math. 71, 297–304 (1982).

    Article  MathSciNet  Google Scholar 

  20. Y. Raynaud, “Complemented Hilbertian subspaces in rearrangement invariant function spaces,” Illinois J. Math. 39 (2), 212–250 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author’s work was supported by the Ministry of Education and Science of the Russian Federation (project no. 1.470.2016/1.4) and also, in part, by the Russian Foundation for Basic Research under grant 18-01-00414-a.

The second author’s work was supported by the Russian Foundation for Basic Research under grants 17-01-00138-a and 18-01-00414-a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Astashkin or E. M. Semenov.

Additional information

Russian Text © The Author(s), 2020, published in Matematicheskie Zametki, 2020, Vol. 107, No. 1, pp. 11–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astashkin, S.V., Semenov, E.M. On a Property of Rearrangement Invariant Spaces whose Second Köthe Dual is Nonseparable. Math Notes 107, 10–19 (2020). https://doi.org/10.1134/S0001434620010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620010022

Keywords

Navigation