Skip to main content
Log in

Decoherence and Coherence Preservation in the Solutions of the GKSL Equation in the Theory of Open Quantum Systems

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The properties of solutions of the Gorini–Kossakowski-Sudarshan–Lindblad (GKSL) equation for the density operator (matrix) of a system that has nondegenerate energy spectrum and weakly interacts with a reservoir are considered. Conditions for the existence of solutions for which the density matrix has off-diagonal entries (“coherences”) not tending to zero at large times are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Kholevo, Quantum Systems, Channels, and Information (MTsNMO, Moscow, 2010) [in Russian].

    Google Scholar 

  2. W. H. Zurek, “Decoherence and the transition from quantum to classical—Revisited,” in Quantum Decoherence (Birkha¨ user Verlag, Basel–Boston–Berlin, 2007), pp. 1–31.

    Google Scholar 

  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambringe Univ. Press, Cambridge, 2000; Mir, Moscow, 2006).

    MATH  Google Scholar 

  4. T. R. Bromley, M. Cianciaruso, and G. Adesso, “Frozen quantum coherence,” Phys. Rev. Lett. 114 (21), 210401 (2015).

    Article  Google Scholar 

  5. M. Lostaglio, K. Korzekwa, and A. Milne, “Markovian evolution of quantum coherence under symmetric dynamics,” Phys. Rev. A 96 (3), 032109 (2017).

    Article  Google Scholar 

  6. D. A. Lidar, “Review of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling,” in Quantum Information and Computation for Chemistry (Wiley, New York, 2014), pp. 295–354.

    Chapter  Google Scholar 

  7. J. Agredo, F. Fagnola, and R. Rebolledo, “Decoherence free subspaces of a quantum Markov semigroup,” J. Math. Phys. 55 (11), 112201 (2014).

    Article  MathSciNet  Google Scholar 

  8. J. Deschamps, F. Fagnola, E. Sasso, and V. Umanità, “Decoherence free subspaces of a quantum Markov semigroup,” Rev. Math. Phys. 28 (1), 1650003 (2016).

    Article  MathSciNet  Google Scholar 

  9. A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,” Rev. Mod. Phys. 89 (4), 041003 (2017).

    Article  MathSciNet  Google Scholar 

  10. B. Baumgartner and N. Narnhofer, “Analysis of quantum semigroups with GKS–Lindblad generators: II. General,” J. Phys. A 41 (39), 395303 (2008).

    Article  MathSciNet  Google Scholar 

  11. B. Baumgartner and N. Narnhofer, “The structures of state space concerning quantum dynamical semigroups,” Rev. Math. Phys. 24 (2), 1250001 (2012).

    Article  MathSciNet  Google Scholar 

  12. V. Albert and L. Jiang, “Symmetries and conserved quantities in Lindblad master equations,” Phys. Rev. A 89 (2), 022118 (2014).

    Article  Google Scholar 

  13. V. Albert, B. Bradlyn, M. Fraas, and L. Jiang, “Geometry and response of Lindbladians,” Phys. Rev. X 6, 041031 (2016).

    Google Scholar 

  14. J. Novotnyý, J. Marusška and. I. Jex, “Quantum Markov processes: From attractor structure to explicit forms of asymptotic states,” Eur. Phys. J. Plus 133 (8), 310.

  15. P. Rooney, A. M. Bloch and C. Rangan, Trees, Forests, and Stationary States of Quantum Lindblad Systems, arXiv:1810.11144 (2018).

    MATH  Google Scholar 

  16. A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional,” Trudy Mat. Inst. Steklov 301, 276–286 (2018) [Proc. Steklov Inst. Math. 301, 262–271 (2018)].

    MathSciNet  MATH  Google Scholar 

  17. G. Androulakis and A. Wiedemann, “GKSL generators and digraphs: computing invariant states,” J. Phys. A 52 (30), 305201 (2019).

    Article  MathSciNet  Google Scholar 

  18. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of N-level systems,” J.Math. Phys. 17 (5), 821–825 (1976).

    Article  MathSciNet  Google Scholar 

  19. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48 (2), 119–130 (1976).

    Article  MathSciNet  Google Scholar 

  20. E. B. Davies, “Markovian master equations,” Commun. Math. Phys. 39 (2), 91–110 (1974).

    Article  MathSciNet  Google Scholar 

  21. L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).

    Book  Google Scholar 

  22. L. Accardi and S. V. Kozyrev, “Lectures on quantum interacting particle systems,” QP-PQ: Quantum Probability and White Noise Analysis 14, 1–195 (2002).

    MathSciNet  MATH  Google Scholar 

  23. A. S. Holevo, “A note on covariant dynamical semigroups,” Rep. Math. Phys. 32 (2), 211–216 (1993).

    Article  MathSciNet  Google Scholar 

  24. I. Marvian and R. W. Spekkens, “How to quantify coherence: Distinguishing speakable and unspeakable notions,” Phys. Rev. A 94 (5), 052324 (2016).

    Article  Google Scholar 

  25. E. B. Davies, “Quantum stochastic processes II,” Commun. Math. Phys. 19 (2), 83–105 (1970).

    Article  MathSciNet  Google Scholar 

  26. A. Frigerio, “Quantum dynamical semigroups and approach to equilibrium,” Lett. Math. Phys 2 (2), 79–87 (1977).

    Article  MathSciNet  Google Scholar 

  27. R. A. Horn and Ch. R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1990; Mir, Moscow, 1989).

    MATH  Google Scholar 

  28. I. Mirzaev and J. Gunawardena, “Laplacian dynamics on general graphs,” Bull. Math. Biol. 75 (11), 2118–2149 (2013).

    Article  MathSciNet  Google Scholar 

  29. T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113 (14), 140401 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to express gratitude to A. I.Mikhailov and A. E. Teretenkov for valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Trushechkin.

Additional information

The article was submitted by the author for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trushechkin, A.S. Decoherence and Coherence Preservation in the Solutions of the GKSL Equation in the Theory of Open Quantum Systems. Math Notes 106, 986–993 (2019). https://doi.org/10.1134/S000143461911035X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143461911035X

Keywords

Navigation