Skip to main content
Log in

On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point

  • Published:
Mathematical Notes Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the boundary-value problem in a semibounded interval for a fourth-order equation with “double degeneracy”: the small parameter in the equation multiplies the product of the unknown function vanishing on the boundary and its highest derivative. Such a problem arises in the description of the motion of weak solutions of polymers near a critical point. For the zero value of the parameter, the solution is the classical Hiemenz solution. We prove the unique solvability of the problem for nonnegative values of the parameter not exceeding 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schlichtung, Boundary Layer Theory (McGraw-Hill Book Co., Inc., New York-Toronto-London, 1960; Nauka, Moscow, 1974).

    Google Scholar 

  2. K. Hiemenz, “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder,” Dingler’s Politech. J. 326, 321–324 (1911).

    Google Scholar 

  3. L. Howarth, “On the calculation steady flow in the boundary layer near the surface of a cylinder in a stream,” Reports and Memoranda. Aeronautical Research Committee 1632 (1935).

    Google Scholar 

  4. L. Howarth, “The boundary layer in three-dimensional flow. Part II. The flow near a stagnation point,” Philos. Mag. (7)42, 1433–1440(1951).

    Article  MathSciNet  Google Scholar 

  5. S. V. Meleshko and B. B. Pukhnachev, “On a class of partially invariant solutions of the Navier-Stokes equations,” Prikl. Mekh. Tekhn. Fiz. 40 (2), 24–33 (1999) [J. Appl. Mech. Tech. Phys. 40 (2), 208-216 (1999)].

    MathSciNet  MATH  Google Scholar 

  6. S.N. Aristov, D. V. Knyazev, and A. D. Polyanin, “Exact solutions of the Navier- Stokes equations with linear dependence of the components of the velocity on two spatial variables,” Teor. Osnovy Khim. Tekhnologii 43 (5), 547–566 (2009).

    Google Scholar 

  7. G. K. Rajeswari and S. L. Rathna, “Flow of a particular class of non-Newtonian visko-elastic and visko-inelastic fluid near a stagnation point,” Z. Angew. Math. Phys. 13, 43–57 (1962).

    Article  MathSciNet  Google Scholar 

  8. K. Sadeghy, H. Hajibeygi, and S.-M. Taghavi, “Stagnation-point flow of upper-convected Maxwell fluid,” Int. J. Non-Linear Mech. 41 (10), 1242–1247 (2006).

    Article  Google Scholar 

  9. J. E. Paullet, “Analysis of stagnation point flow of an upper-convected Maxwell fluid,” Electron. J. Differential Equations, No. Paper No. 302 (2017).

  10. J. B. McLeod and K. R. Rajagopal, “On the uniqueness of flow of a Navier-Stokes fuid due to a stretching boundary,” Arch. Rational Mech. Anal. 98 (4), 385–393 (1987).

    Article  MathSciNet  Google Scholar 

  11. D. Riabouchinsky, “Quelques considérations sur les mouvements plans rotationnels d’un liquide,” C. R. Hebdomadaires Acad. Sci. 179, 1133–1136 (1924).

    MATH  Google Scholar 

  12. O. A. Frolovskaya, “Unsteady self-similar viscous flow near a stagnation point,” Prikl. Mekh. Tekhn. Fiz. 57 (3), 3–8 (2016) [J. Appl. Mech. Tech. Phys. 57 (3), 391-395 (2016)].

    MathSciNet  MATH  Google Scholar 

  13. V. A. Galaktionov and J. L. Vazquez, “Blow-up of the class of solutions with free boundaries for the Navier-Stokes equations,” Adv. Differential Equations 4 (3), 297–321 (1999).

    MathSciNet  MATH  Google Scholar 

  14. A. G. Petrova, V. V. Pukhnachev and O. A. Frolovskaya, “Analytical and numerical investigation of unsteady flow near a critical point,” Prikl. Mat. Mekh. 80 (3), 304–316 (2016) [J. Appl. Math. Mech. 80 (3), 215-224 (2016)].

    MathSciNet  MATH  Google Scholar 

  15. Ya. I. Voitkunskii, V. B. Amfilokhiev, and V. A. Pavlovskii, “Equations of the motion of a liquid in view of its relaxation properties,” Trudy Leningr. Korablestroit. Inst. 69, 9–26 (1970).

    Google Scholar 

  16. V. A. Pavlovskii, “On theoretical description of weak aqueous solutions of polymers,” Dokl. Akad. Nauk SSSR 200 (4), 809–812 (1971).

    Google Scholar 

  17. O. A. Frolovskaya and V. V. Pukhnachev, “Analysis of the models of motion aqueous solutions of polymers on the basis of their exact solutions,” Polymers 10 (6), 684–696 (2018).

    Article  Google Scholar 

  18. Yu. D. Bozhkov and V. V. Pukhnachev, “Group analysis of the equations of motion of aqueous polymer solutions,” Dokl. Akad. Nauk 460 (5), 536–539 (2015).

    MathSciNet  Google Scholar 

  19. A. Friedman, Partial Differential Equations of Parabolic Type (Englewood-Cliffs, 1964; Mir, Moscow, 1968).

    MATH  Google Scholar 

  20. Differentialgleichungen: Lösungsmethoden und Lösungen, Vol. V.Gewöhnliche Differentialgleichungen, 6. Verbesserte Auflage (Leipzig, 1959; Nauka, Moscow, 1961, 1976).

  21. T. P. Pukhnacheva, “The problem of the axially symmetric flow of an aqueous solution of polymers near a critical point,” in Trudy Sem. Geom. i Mat. Model. (Altai Gos. Univ., Barnaul, 2016). Vol. 2, pp. 75–80 [in Russian].

    Google Scholar 

Download references

Acknowledgments

The author wishes to express deep gratitude to V. V. Pukhnachev for attracting the author’s attention to this research area and valuable advice.

Funding

This work was supported by the Russian Foundation for Basic Research under grant 16-01 -00127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Petrova.

Additional information

Russian Text © The Author(s), 2019, published in Matematicheskie Zametki, 2019, Vol. 106, No. 5, pp. 723-735.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, A.G. On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point. Math Notes 106, 784–793 (2019). https://doi.org/10.1134/S0001434619110117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619110117

Keywords

Navigation