Skip to main content
Log in

Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We introduce the most general mixed fractional derivatives and integrals from three points of views: probability, the theory of operator semigroups, and the theory of generalized functions. The solutions to the resulting mixed fractional PDEs turned out to be representable in terms of of completely monotone functions in a certain class generalizing the usual Mittag-Leffler functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Agrawal, “Generalized variational problems and Euler-Lagrange equations,” Comput. Math. Appl. 59 (5), 1852–1864(2010).

    Article  MathSciNet  Google Scholar 

  2. M. M. Dzrbasjan and A. B. Nersesian, “Fractional derivatives and the Cauchy problem for differential equations of fractional order,” Izv. Akad. Nauk Armjan. SSR Sen Mat. 3(1), 3–29(1968).

    MathSciNet  Google Scholar 

  3. A. B. Malinowska, T. Odzijewicz, and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations (Springer, Cham, 2015).

    Book  Google Scholar 

  4. Y. Xu, Zh. He, and O. P. Agrawal, “Numerical and analytical solutions of new generalized fractional diffusion equation,” Comput. Math. Appl. 66 (10), 2019–2029 (2013).

    Article  MathSciNet  Google Scholar 

  5. V. Kiryakova, Generalized Fractional Calculus and Applications, in Pitman Res. Notes Math. Ser. (Longman Sci. & Tech., Harlow; copublished in the United States: Wiley, New York, 1994), Vol. 301.

    Google Scholar 

  6. A. N. Kochubei and Y. Kondratiev, “Fractional kinetic hierarchies and intermittency,” Kjnet. Relat. Models 10(3), 725–740(2017).

    Article  MathSciNet  Google Scholar 

  7. V. N. Kolokoltsov, “On fully mixed and multidimensional extensions of the Caputo and Riemann-Liouville derivatives, related Markov processes and fractional differential equations,” Fract. Calc. Appl. Anal. 18 (4), 1039–1073(2015).

    Article  MathSciNet  Google Scholar 

  8. V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, in Cambridge Tracts in Math. (Cambridge Univ. Press, Cambridge, 2010), Vol. 182.

    Google Scholar 

  9. V. N. Kolokoltsov, Markov Processes, Semigroups and Generators, in De Gruyter Stud. Math. (Walter de Gruyter, 2011), Vol. 38.

    Google Scholar 

  10. M. M. Meerschaert and Sikorskii, “Stochastic Models for Fractional Calculus,” in De Gruyter Stud. Math. (Walter de Gruyter, 2012), Vol. 43.

    Google Scholar 

  11. I. I. Gikhman and A. V. Skorokhod, Theory of Stochastic Processes (Nauka, Moscow, 1973), Vol. 2 [in Russian].

    MATH  Google Scholar 

  12. V Kolokoltsov, Chronological Operator-Valued Feynman-Kac Formulae for Generalized Fractional Evolutions, arXiv: 1705.08157(2017).

    Google Scholar 

  13. R. Garra, A. Giusti, F. Mainardi, and G. Pagnini, “Fractional relaxation with time-varying coefficient,” Fract. Calc. Appl. Anal. 17 (2), 424–439 (2014).

    Article  MathSciNet  Google Scholar 

  14. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods (World Sci. Publ., Hackensack, NJ, 2017).

    MATH  Google Scholar 

  15. A. V. Pskhu, Partial Differential Equations of Fractional Order (Nauka, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  16. V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Heidelberg, 2010).

    MATH  Google Scholar 

  17. V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. I: Background and Theory (Springer, Heidelberg, 2012).

    Google Scholar 

  18. B. J. West, Fractional Calculus View of Complexity. Tomorrow’s Science (CRC Press, Boca Raton, FL, 2016).

    Book  Google Scholar 

  19. V. N. Kolokol’tsov, “Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics,” Teor. Veroyatn. Primenen. 53 (4), 684–703 (2008) [Theory Probab. Appl. 53 (4), 594-609 (2008)].

    Article  MathSciNet  Google Scholar 

  20. T. Atanackovic, D. Dolicanin, S. Pilipovic, and B. Stankovic, “Cauchy problems for some classes of linear fractional differential equations,” Fract. Calc. Appl. Anal. 17 (4), 1039–1059 (2014).

    Article  MathSciNet  Google Scholar 

  21. P. Gorka, H. Prado, and J. Trujillo, “The time fractional Schrödinger equation on Hilbert space,” Integral Equations Operator Theory 87(1), 1–14(2017).

    Article  MathSciNet  Google Scholar 

  22. R. Gorenflo, Y. Luchko, and M. Stojanovic, “Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density,” Fract. Calc. Appl. Anal. 16 (2), 297–316(2013).

    Article  MathSciNet  Google Scholar 

  23. N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii, “Correlation structure of fractional Pearson diffusions,” Comput. Math. Appl. 66 (5), 737–745 (2013).

    Article  MathSciNet  Google Scholar 

  24. E. Orsingher and B. Toaldo, “Space-time fractional equations and the related stable processes at random time,” J. Theoret. Probab. 30, 1–26(2017).

    Article  MathSciNet  Google Scholar 

  25. M. E. Hernandez-Hernandez and V N. Kolokoltsov, “On the solution of two-sided fractional ordinary differential equations of Caputo type,” Fract. Calc. Appl. Anal. 19 (6), 1393–1413 (2016).

    Article  MathSciNet  Google Scholar 

  26. V. N. Kolokoltsov and M. A. Veretennikova, “Fractional Hamilton-Jacobi-Bellman equations for scaled limits of controlled continuous time random walks,” Commun. Appl. Ind. Math. 6(1), e–484 (2014).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kolokol’tsov.

Additional information

Russian Text © The Author(s), 2019, published in Matematicheskie Zametki, 2019, Vol. 106, No. 5, pp. 687-707.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolokol’tsov, V.N. Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions. Math Notes 106, 740–756 (2019). https://doi.org/10.1134/S0001434619110087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619110087

Keywords

Navigation