Skip to main content
Log in

Regular Ordinary Differential Operators with Involution

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The main results of the paper are related to the study of differential operators of the form

$$Ly = {y^{\left( n \right)}}\left( { - x} \right) + \sum\limits_{k = 1}^n {pk\left( x \right){y^{\left( {n - k} \right)}}\left( { - x} \right) + } \sum\limits_{k = 1}^n {{q_k}\left( x \right){y^{\left( {n - k} \right)}}} \left( x \right),\,x \in \left[ { - 1,1} \right],$$

with boundary conditions of general form concentrated at the endpoints of a closed interval. Two equivalent definitions of the regularity of boundary conditions for the operator L are given, and a theorem on the unconditional basis property with brackets of the generalized eigenfunctions of the operator L in the case of regular boundary conditions is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Vladykina and A. A. Shkalikov, “Spectral properties of ordinary differential operators with involution,” Dokl. Akad. Nauk 484 (1), 12–17 (2019).

    MATH  Google Scholar 

  2. A. A. Kopzhassarova, A. L. Lukashov, and A. M. Sarsenbi, “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution,” Abstr. Appl. Anal. 2012 (Art. ID 590781) (2012).

    Google Scholar 

  3. V. P. Kurdyumov and A. P. Khromov, “On Riesz bases formed from eigen- and associated functions of a functional-differential equation with a reflection operator,” Differ. Uravn. 44 (2), 196–204 (2008) [Differ. Equ. 44 (2), 203–212 (2008)].

    MathSciNet  Google Scholar 

  4. T. Sh. Kal’menov and U. A. Iskakova, “A criterion for the strong solvability of the mixed Cauchy problem for the Laplace equation,” Dokl. Akad. Nauk 414 (2), 168–171 (2007) [Dokl. Math. 75 (3), 370–373 (2007)].

    MathSciNet  MATH  Google Scholar 

  5. A. M. Sarsenbi, “Unconditional bases related to a nonclassical second-order differential operator,” Differ. Uravn. 46 (4), 506–511 (2010) [Differ. Equ. 46 (4), 509–514 (2010)].

    MathSciNet  MATH  Google Scholar 

  6. A. Kopzhassarova and A. Sarsenbi, “Basis properties of eigenfunctions of second-order differential operators with involution,” Abstr. Appl. Anal. 2012 (Art. ID 576843) (2012).

    Google Scholar 

  7. M. A. Sadybekov and A. M. Sarsenbi, “Criterion for the basis property of the eigenfunction system of a multiple differentiation operator with an involution,” Differ. Uravn. 48 (8), 1126–1132 (2012) [Differ. Equ. 48 (8), 1126–1132 (2012)].

    MathSciNet  MATH  Google Scholar 

  8. V. P. Kurdyumov, “On Riesz bases composed of the eigenfunctions of a second-order differential operator with involution and integral boundary conditions,” Izv. Saratov. Univ. Nov. Ser. Ser. Mat. Mekh. Inf. 15 (4), 392–405 (2015).

    Article  Google Scholar 

  9. L. V. Kritskov and A. M. Sarsenbi, “Spectral properties of a nonlocal problem for a second-order differential equation with an involution,” Differ. Uravn. 51 (8), 990–996 (2015) [Differ. Equ. 51 (8), 990–996 (2015)].

    MathSciNet  MATH  Google Scholar 

  10. A. A. Shkalikov, “Boundary-value problems for ordinary differential equations with a parameter in the boundary conditions,” Trudy Sem. Petrovsk. 9, 190–229 (2007).

    MathSciNet  MATH  Google Scholar 

  11. B. Ya. Levin, Lectures on Entire Functions (Amer. Math. Soc., Providence, RI, 1996).

    Book  Google Scholar 

  12. G. D. Birkhoff, “On the asymptotic character of the solution certain linear differential equations containing a parameter,” Trans. Amer. Math. Soc. 9 (2), 219–231 (1908).

    Article  MathSciNet  Google Scholar 

  13. G. D. Birkhoff, “Boundary-value and expansion problem of ordinary linear differential equations,” Trans. Amer. Math. Soc. 9 (4), 373–395 (1908).

    Article  MathSciNet  Google Scholar 

  14. M. A. Naimark, Linear Differential Operators (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  15. A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator.” Uspekhi Mat. Nauk 34 (5 (209)), 235–236 (1979) [Russian Math. Surveys 34 (5), 249–250 (1979)].

    MathSciNet  Google Scholar 

  16. A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum,” Uspekhi Mat. Nauk 71 (5 (431)), 113–174 (2016) [Russian Math. Surveys 71 (5), 907–964 (2016)].

    Article  MathSciNet  Google Scholar 

  17. N. Dunford and J. T. Schwartz, Linear Operators, Vol. 3: Spectral Operators (Wiley, New York, 1971;; Mir, Moscow, 1974).

    MATH  Google Scholar 

  18. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators in Hilbert Space (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  19. A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils (Shtiintsa, Kishinev, 1986) [in Russian].

    MATH  Google Scholar 

  20. A. K. Motovilov and A. A. Shkalikov, “Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators,” Funktsional. Anal. Prilozhen. 53 (3), 45–60 (2019).

    Article  MathSciNet  Google Scholar 

  21. T. Kato, Perturbation Theory of Linear Operators (Springer-Verlag, Berlin, 1995) [in Russian].

    Book  Google Scholar 

  22. I. D. Evzerov and P. E. Sobolevskii, “Fractional powers of ordinary differential operators,” Differ. Uravn. 9 (2), 228–240 (1973).

    MathSciNet  Google Scholar 

  23. I. D. Evzerov, “Domains of fractional powers of ordinary differential operators in spaces {Lp},” Mat. Zametki 21 (4), 509–518 (1977) [Math. Notes 21 (4), 285–290 (1977)].

    MathSciNet  MATH  Google Scholar 

  24. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  25. D. V. Treshchev and A. A. Shkalikov, “On the Hamiltonian property of linear dynamical systems in Hilbert space,” Mat. Zametki 101 (6), 911–918 (2017) [Math. Notes 101 (6), 1033–1039 (2017)].

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under grant 17-11-01215.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. E. Vladykina or A. A. Shkalikov.

Additional information

Russian Text © The Author(s), 2019, published in Matematicheskie Zametki, 2019, Vol. 106, No. 5, pp. 643–659.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladykina, V.E., Shkalikov, A.A. Regular Ordinary Differential Operators with Involution. Math Notes 106, 674–687 (2019). https://doi.org/10.1134/S0001434619110026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619110026

Keywords

Navigation