Skip to main content
Log in

The Riordan–Dirichlet Group

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Riordan matrices are infinite lower triangular matrices corresponing to certain operators in the space of formal power series. In the paper, we introduce analogous matrices for the space of Dirichlet formal series. It is shown that these matrices form a group, which is analogous to the Riordan group. An analog of the Lagrange inversion formula is given. As an example of the application of these matrices, a method for obtaining identities analogous to those obtained by using Riordan matrices is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Shapiro, S. Getu, W. J. Woan and L. C. Woodson, “The Riordan group,” Discrete Appl.Math. 34 (1-3), 229–339 (1991).

    Article  MathSciNet  Google Scholar 

  2. R. Sprugnoli, “Riordan arrays and combinatorial sums,” Discrete Math. 132, 267–290 (1994).

    Article  MathSciNet  Google Scholar 

  3. R. Sprugnoli, “Riordan arrays and Abel–Gould identity,” Discrete Math. 142, 213–233 (1995).

    Article  MathSciNet  Google Scholar 

  4. D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, “On some alternative characterizations of Riordan arrays,” Canad. J. Math. 49 (2), 301–320 (1997).

    Article  MathSciNet  Google Scholar 

  5. W. Wang and T. Wang, “Generalized Riordan arrays,” Discrete Math. 308, 6466–6500 (2008).

    Article  MathSciNet  Google Scholar 

  6. P. Barry, A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms (University College Cork, 2009).

    Google Scholar 

  7. D. E. Knuth, “Convolution polynomials,” Mathematica J. 2 (4), 67–78 (1992).

    Google Scholar 

  8. A. Sowa, “Factorizing matrices by Dirichlet multiplication,” Linear Algebra Appl. 438 (5), 2385–2393 (2013).

    Article  MathSciNet  Google Scholar 

  9. A. Sowa, “The Dirichlet Ring and Unconditional Bases in L 2[0, 2π],” Funktsional. Anal. i Prilozhen. 47 (3), 75–81 (2013) [Funct. Anal. Appl. 47 (3), 227–232 (2013)].

    Article  MathSciNet  Google Scholar 

  10. A. Sowa, “On the Dirichlet matrix operators in sequence spaces,” Appl. Math. (Warsaw) 44 (2), 185–196 (2017).

    Article  MathSciNet  Google Scholar 

  11. S. K. Lando, Lectures on Generating Functions (MTsNMO, Moscow, 2007) [in Russian].

    Google Scholar 

  12. S. K. Lando, Introduction to Discrete Mathematics (MTsNMO, Moscow, 2012) [in Russian].

    Google Scholar 

  13. J. Riordan, Combinatorial Identities (Robert E. Krieger Publishing Co., Huntington, NY, 1979; Nauka, Moscow, 1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Burlachenko.

Additional information

Russian Text © The Author(s), 2019, published in Matematicheskie Zametki, 2019, Vol. 106, No. 4, pp. 506–518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlachenko, E.V. The Riordan–Dirichlet Group. Math Notes 106, 514–525 (2019). https://doi.org/10.1134/S0001434619090219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619090219

Keywords

Navigation