Skip to main content
Log in

Generalized Smoothness and Approximation of Periodic Functions in the Spaces Lp, 1 < p < +∞

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Norms of images of operators of multiplier type with an arbitrary generator are estimated by using best approximations of periodic functions of one variable by trigonometric polynomials in the scale of the spaces Lp, 1 < p < +∞. A Bernstein-type inequality for the generalized derivative of the trigonometric polynomial generated by an arbitrary generator ψ, sufficient constructive ψ-smoothness conditions, estimates of best approximations of ψ-derivatives, estimates of best approximations of ψ-smooth functions, and an inverse theorem of approximation theory for the generalized modulus of smoothness generated by an arbitrary periodic generator are obtained as corollaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Stepanets, Classification and Approximation of Periodic Functions (Naukova Dumka, Kiev, 1987) [in Russian].

    MATH  Google Scholar 

  2. H. Triebel, Higher Analysis (Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992).

  3. K. Runovski and H.-J. Schmeisser, “Smoothness and function spaces generated by homogeneous multipliers,” J. Fund Spaces Appl., No. Art. ID 643135 (2012).

    MATH  Google Scholar 

  4. H.-J. Schmeisser and W. Sickel, “Characterization periodic function spaces via means of Abel-Poisson and Bessel-potential type,” J. Approx. Theory 61 (2), 239–262 (1990).

    Article  MathSciNet  Google Scholar 

  5. K. V. Runovskii, “A direct theorem of approximation theory for a general modulus of smoothness,” Mat. Zametki 95 (6), 899–910 (2014) [Math. Notes 95 (6), 833–842 (2014)].

    Article  MathSciNet  Google Scholar 

  6. K. V. Runovskii, “Approximation by Fourier means and generalized moduli of smoothness,” Mat. Zametki 99 (4), 574–587 (2016) [Math. Notes 99 (4), 564–575 (2016)].

    Article  MathSciNet  Google Scholar 

  7. K. V. Runovskii, “Trigonometric polynomial approximation, K-functional and generalized moduli of smoothness,” Mat. Sb. 208(2), 70–87 (2017) [Sb. Math. 208(2), 237–254 (2017)].

    Article  MathSciNet  Google Scholar 

  8. K. Runovski and H.-J. Schmeisser, “General moduli of smoothness and approximation by families of linear polynomial operators,” in New Perspectives on Approximation and Sampling Theory (Birkhauser, Cham, 2014), pp. 269–298.

    Chapter  Google Scholar 

  9. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Eucliadean Spaces (Princeton Univ. Press, Princeton, NJ, 1971).

    Google Scholar 

  10. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. Vol. 1. One-Dimensional Theory (Academic Press, New York, 1971).

    Book  Google Scholar 

  11. A. I. Stepanets, Methods of Approximation Theory. I, II, in Trudy. Inst. Mat. NAN Ukr, Vol. 40: Mathematics and Its Applications (Inst. Mat. NAN Ukr., Kiev, 2002), [in Russian].

    MATH  Google Scholar 

  12. S. B. Stechkin, “A generalization of some inequalities of S. N. Bernstein,” Dokl. AN SSSR 60, 1511–1514 (1948).

    MathSciNet  MATH  Google Scholar 

  13. V. I. Ivanov, “Direct and converse theorems of the theory of approximation in the metric of L p for 0 < p < 1,” Mat. Zametki 18 (5), 641–658 (1975) [Math. Notes 18(5), 972–982(1975)].

    MathSciNet  Google Scholar 

  14. E. A. Storozhenko, V. G. Kjotov, and P. Oswald, “Direct and converse theorems of Jackson type and the inverse theorems of Jackson type in L p spaces, 0 p < 1,” Mat. Sb. 98 (140) (3(11)), 395–415 (1975) [Math. USSR-Sb. 27(3)355–374(1975)].

    MathSciNet  Google Scholar 

  15. V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives,” Izv Akad. Nauk SSSR Ser.Mat. 45(1), 3–22 (1981) [Math. USSR-Izv. 18(1), 1–17(1982)].

    MathSciNet  Google Scholar 

  16. V M. Tikhomirov, Some Questions in Approximation Theory (Izd. Moskov Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  17. E. Belinski and E. Liflyand, “Approximation properties in L p, 0 < p < 1,” Funct. Approx. Comment. Math. 22, 189–199 (1994).

    Google Scholar 

  18. K. Runovski and H.-J. Schmeisser, “On some extensions of Bernstein's inequalities for trigonometric polynomials,” Funct. Approx. Comment. Math. 29, 125–142 (2001).

    Article  MathSciNet  Google Scholar 

  19. B. V. Simonov and S. Yu. Tikhonov, “Embedding theorems in constructive approximation,” Mat. Sb. 199(9), 107–148 (2008) [Sb. Math. 199(9), 1367–1407(2008)].

    Article  MathSciNet  Google Scholar 

  20. P. L. Butzer, H. Dyckhoff, E. Gorlich, and R. L. Stens, “Best trigonometric approximation, fractional order derivatives and Lipschitz classes,” Canadian J. Math. 29 (4), 781–793 (1977).

    Article  MathSciNet  Google Scholar 

  21. M. K. Potapov and B. V. Simonov, “Moduli of smoothness of positive order of functions from the spaces L p, 1 < p < +∞,” in Trudy Mekh.-Mat. Fak. MGU, Modern Problems of Mathematics and Mechanics (Izd. Mekh.-Mat. Fak. MGU, Moscow, 2011), Vol. 7, No. 1 pp. 100–109, [in Russian].

    Google Scholar 

  22. K. V. Runovski and H.-J. Schmeisser, “Moduli of smoothness related to fractional Riesz-derivatives,” Z. Anal. Anwend. 34(1), 109–125 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author wishes to express gratitude to the referee for valuable and useful remarks that have led to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Runovskii.

Additional information

Russian Text © The Author(s), 2019, published in Matematicheskie Zametki, 2019, Vol. 106, No. 3, pp. 436–449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runovskii, K.V. Generalized Smoothness and Approximation of Periodic Functions in the Spaces Lp, 1 < p < +∞. Math Notes 106, 412–422 (2019). https://doi.org/10.1134/S0001434619090104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619090104

Keywords

Navigation