Skip to main content
Log in

Characterization of Locally Finite Simple Groups of Type G2 over Fields of Odd Characteristics in the Class of Periodic Groups

Mathematical Notes Aims and scope Submit manuscript

Abstract

We prove that a periodic group is locally finite, given that each of its finite subgroups lies in a subgroup isomorphic to a finite simple group G2 of Lietypeovera field of odd characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. W. Carter, Simple Groups of Lie Type (John Wiley & Sons, London, 1972).

    MATH  Google Scholar 

  2. V. V. Belyaev, “Locally Finite Chevalley Groups,” in Investigations in Group Theory (USC AS USSSR, Sverdlovsk, 1984), pp. 39–50 [in Russian].

    Google Scholar 

  3. A. V. Borovik, “Embeddings of finite Chevalley groups and periodic linear groups,” Sib. Math. J. 24 (6), 26–35 (1983) [Sib. Math. J. 24 (6), 843–851 (1983)].

    MATH  Google Scholar 

  4. B. Hartley and G. Shute, “Monomorphisms and direct limits of finite groups of Lie type,” Quart. J. Math. Oxford Ser. (2) 35 (137), 49–71 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Thomas, “The classification of the simple periodic linear groups,” Arch. Math. (Basel) 41 (2), 103–116 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. J. Larsen and R. Pink, “Finite subgroups of algebraic groups,” J. Amer. Math. Soc. 24 (4), 1105–1158 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. K. Shlepkin, “On some periodic groups saturated by finite simple groups,” Mat. Tr. 1 (1), 129–138 (1998) [Sib. Adv. in Math. 9 (2), 100–108 (1999)].

    MathSciNet  MATH  Google Scholar 

  8. A. G. Rubashkin and K. A. Filippov, “Periodic groups saturated with the groups L 2(p n),” Sib. Math. J. 46 (6), 1388–1392 (2005) [Sib. Math. J. 46 (6), 1119–1122 (2005)].

    Article  MATH  Google Scholar 

  9. D. V. Lytkina and A. A. Shlepkin, “Periodic groups saturated with finite simple groups of types U 3 and L 3,” Algebra and Logic 55 (4), 441–448 (2016) [Algebra and Logic 55 (4), 289–294 (2016)].

    Article  MathSciNet  Google Scholar 

  10. K. A. Filippov, Groups Saturated with Finite Non-Abelian Simple Groups and Their Extensions, Cand. Sci. (Phys.–Math.) Dissertation (Krasnoyarsk, 2005) [in Russian].

    Google Scholar 

  11. K. A. Filippov, “On periodic groups saturated by finite simple groups,” Sib. Math. J. 53(2), 430–438 (2012) [Sib. Math. J. 53 (2), 345–351 (2012)].

    Article  MathSciNet  Google Scholar 

  12. D. Gorenstein, Finite Groups (Chelsea Publ., New York, 1980).

    MATH  Google Scholar 

  13. J. H. Conway, R.T. Curtis, S. P. Norton, R.A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Group (Clarendon Press, Oxford, 1985).

    MATH  Google Scholar 

  14. D. Gorenstein and K. Harada, “Finite simple groups of low 2-rank and the families G 2(q), D 24 , q odd,” Bull. Amer. Math. Soc. 77 (6), 829–862 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, in London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2013), Vol. 407.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Zhu, D. V. Lytkina or V. D. Mazurov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Lytkina, D.V. & Mazurov, V.D. Characterization of Locally Finite Simple Groups of Type G2 over Fields of Odd Characteristics in the Class of Periodic Groups. Math Notes 105, 513–518 (2019). https://doi.org/10.1134/S0001434619030234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619030234

Keywords

Navigation