Advertisement

Mathematical Notes

, Volume 105, Issue 3–4, pp 385–397 | Cite as

Methods for Solving Ill-Posed Extremum Problems with Optimal and Extra-Optimal Properties

  • A. S. LeonovEmail author
Article
  • 16 Downloads

Abstract

The notion of the quality of approximate solutions of ill-posed extremum problems is introduced and a posteriori estimates of quality are studied for various solution methods. Several examples of quality functionals which can be used to solve practical extremum problems are given. The new notions of the optimal, optimal-in-order, and extra-optimal qualities of a method for solving extremum problems are defined. A theory of stable methods for solving extremum problems (regularizing algorithms) of optimal-in-order and extra-optimal quality is developed; in particular, this theory studies the consistency property of a quality estimator. Examples of regularizing algorithms of extra-optimal quality for solving extremum problems are given.

Keywords

ill-posed extremum problems regularizing algorithms quality of approximate solution a posteriori estimate of quality regularizing algorithm of extra-optimal quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1974; Wiley, New York, 1977).Google Scholar
  2. 2.
    A.N. Tikhonov, A.S. Leonov, and A.G. Yagola, Nonlinear Ill-Posed Problems (Nauka, Moscow, 1995; Chapman and Hall, London, 1998), Vols. 1 and 2.zbMATHGoogle Scholar
  3. 3.
    V. A. Morozov, “Calculation of the lower bounds of functionals from approximate information,” Zh. Vychisl. Mat. i Mat. Fiz. 13 (4), 1045–1049 (1973) [U. S. S. R. Comput. Math. and Math. Phys. 13 (4), 275–281 (1973)].Google Scholar
  4. 4.
    A. N. Tikhonov and F. P. Vasil’ev, “Methods for solving ill-posed extremum problems,” in Mathematical Models and Numerical Methods, Banach Center Publ. (PWN, Warsaw, 1978), Vol. 3, pp. 297–342.Google Scholar
  5. 5.
    F. P. Vasil’ev, Methods for Solving Extremum Problems. Minimization Problems in function Spaces, Regularization, Approximation (Nauka, Moscow, 1981) [in Russian].Google Scholar
  6. 6.
    O. A. Liskovets, Variational Methods for Solving Unstable Problems (Nauka i Tekhnika, Minsk, 1981) [in Russian].Google Scholar
  7. 7.
    A. S. Leonov, “On an application of the generalized discrepancy principle for the solution of ill-posed extremum problems,” Dokl. Akad. Nauk SSSR 262 (6), 1306–1310 (1982) [Soviet Math. Dokl. 25, 227–231 (1982)].MathSciNetGoogle Scholar
  8. 8.
    M. Yu. Kokurin, “Source conditions and accuracy estimates in Tikhonov’s scheme of solving ill-posed nonconvex optimization problems,” J. Inverse Ill-Posed Probl. 26 (4), 463–475 (2018).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    M. Yu. Kokurin, “Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov’s scheme for solving ill-posed optimization problems,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 6, 60–69 (2017) [Russian Math. (Iz. VUZ) 61 (6), 51–59 (2017)].Google Scholar
  10. 10.
    V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications (Nauka, Moscow, 1978) [in Russian].zbMATHGoogle Scholar
  11. 11.
    V. P. Tanana, Methods for Solving Operator Equations (Nauka, Moscow, 1981) [in Russian].zbMATHGoogle Scholar
  12. 12.
    G. M. Vainikko, Methods for Solving Linear Ill-Posed Problems in Hilbert Spaces (Izd. Tartu Gos. Univ., Tartu, 1982) [in Russian].Google Scholar
  13. 13.
    V. A. Morozov, Regular Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1987) [in Russian].Google Scholar
  14. 14.
    A. B. Bakushinskii and M. Yu. Kokurin, Algorithmic Analysis of Irregular Operator Equations (Lenand, Moscow, 2012) [in Russian].zbMATHGoogle Scholar
  15. 15.
    H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Acad. Publ., Dordrecht, 1996).zbMATHCrossRefGoogle Scholar
  16. 16.
    A. S. Leonov, Solution of Ill-Posed Inverse Problems. Outline of Theory, Practical Algorithms, and Demonstrations in MATLAB (Librokom, Moscow, 2009) [in Russian].Google Scholar
  17. 17.
    V. A. Vinokurov and Yu. L. Gaponenko, “A posteriori estimates of the solutions of ill-posed inverse problems,” Dokl. Akad. Nauk SSSR 263 (2), 277–280 (1982) [Soviet Math. Dokl. 25, 325–328 (1982)].MathSciNetzbMATHGoogle Scholar
  18. 18.
    K. Yu. Dorofeev, V. N. Titarenko, and A. G. Yagola, “Algorithms for constructing a posteriori errors of solutions to ill-posed problems,” Zh. Vychisl. Mat. i Mat. Fiz. 43 (1), 12–25 (2003) [Comput. Math. and Math. Phys. 43 (1), 10–23 (2003)].MathSciNetzbMATHGoogle Scholar
  19. 19.
    A.G. Yagola, N.N. Nikolaeva, and V. N. Titarenko, “Error estimation for a solution to the Abel equation on sets of monotone and convex functions,” Sib. Zh. Vychisl. Mat. 6 (2), 171–180 (2003).zbMATHGoogle Scholar
  20. 20.
    A. B. Bakushinskii, “A posteriori error estimates for approximate solutions of irregular operator equations,” Dokl. Ross. Akad. Nauk 437 (4), 439–440 (2011) [Dokl. Math. 83 (2), 192–193 (2011)].MathSciNetGoogle Scholar
  21. 21.
    A. B. Bakushinsky, A. Smirnova, and H. Liu, “A posteriori error analysis for unstable models,” J. Inverse Ill-Posed Probl. 20 (4), 411–428 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    A. B. Bakushinskii, and A. S. Leonov, “New a posteriori error estimates for approximate solutions of irregular operator equations,” Vych. Met. Programmirovanie 15 (2), 359–369 (2014).Google Scholar
  23. 23.
    A. S. Leonov, “A posteriori accuracy estimations of solutions to ill-posed inverse problems and extra-optimal regularizing algorithms for their solution,” Sib. Zh. Vychisl. Mat. 15 (1), 83–100 (2012) [Numer. Anal. Appl. 5 (1), 68–83 (2012)].MathSciNetzbMATHGoogle Scholar
  24. 24.
    A. S. Leonov, “Extra-optimal methods for solving ill-posed problems,” J. Inverse Ill-Posed Probl. 20 (5–6), 637–665 (2012).MathSciNetzbMATHGoogle Scholar
  25. 25.
    A. S. Leonov, “Pointwise extra-optimal regularizing algorithms,” Vych. Met. Programmirovanie 14 (2), 215–228 (2013).MathSciNetGoogle Scholar
  26. 26.
    A. S. Leonov, “Regularizing algorithms with optimal and extra-optimal quality,” Sib. Zh. Vychisl. Mat. 19 (4), 371–383 (2016) [Numer. Anal. Appl. 9 (4), 288–298 (2016)].MathSciNetzbMATHGoogle Scholar
  27. 27.
    E. Giusti, Minimal Surfaces and Functions of Bounded Variation (Birkhauser Verlag, Basel, 1984).zbMATHCrossRefGoogle Scholar
  28. 28.
    S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems (Nauka, Moscow, 1969) [in Russian].Google Scholar
  29. 29.
    S. J. Wernecke and L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. C-26 (4), 351–364 (1977).zbMATHCrossRefGoogle Scholar
  30. 30.
    S. L. Sobolev, Several Applications of Functional Analysis in Mathematical Physics (Nauka, Moscow, 1988) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations