Mathematical Notes

, Volume 105, Issue 3–4, pp 366–375 | Cite as

On Intersections of Abelian and Nilpotent Subgroups in Finite Groups. II

  • V. I. ZenkovEmail author


Let G be a finite group, and let A and B be, respectively, an Abelian and a nilpotent subgroup in G. In the present paper, we complete the proof of the theorem claiming that there is an element g of G such that the intersection of A with the subgroup conjugate to B by g is contained in the Fitting subgroup of G.


finite group Abelian subgroup nilpotent subgroup intersection of subgroups Fitting subgroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Zenkov, “Intersection of Abelian subgroups in finite groups,” Mat. Zametki 56 (2), 150–152 (1994) [Math. Notes 56 (1–2), 869–871 (1994)].MathSciNetGoogle Scholar
  2. 2.
    I. M. Isaacs, Finite Group Theory (Amer. Math. Soc., Providence, RI, 2008) [in Russian].zbMATHGoogle Scholar
  3. 3.
    I. M. Isaacs, “Abelian point stabilizers in transitive permutation groups,” Proc. Amer. Math. Soc. 130 (7), 1923–1925 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. R. Jamali and M. Viseh, “On nilpotent subgroups containing non-trivial normal subgroups,” J. Group Theory 13 (3), 411–416 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    V. I. Zenkov, “On intersections of Abelian and nilpotent subgroups in finite groups. I,” in Trudy Inst. Mat. i Mekh. UrO, Russian Academy of Sciences (2015), Vol. 21, pp. 128–131, 3 [Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1, 174–177 (2016)].Google Scholar
  6. 6.
    D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification (Plenum Publ. Corp., New York, 1982).zbMATHGoogle Scholar
  7. 7.
    V. D. Mazurov and V. I. Zenkov, “On intersections of Sylow p-subgroups in finite groups,” Algebra Logika 35 (4), 424–432 (1996) [Algebra Logic 35 (4), 236–240 (1996)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    V. I. Zenkov, “The intersections of nilpotent subgroups in finite groups,” Fundam. Prikl. Mat. 2 (1), 1–92 (1996) [in Russian].MathSciNetzbMATHGoogle Scholar
  9. 9.
    D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups (Amer. Math. Soc., Providence, RI, 1994).zbMATHCrossRefGoogle Scholar
  10. 10.
    J. N. Convay, R.T. Curtis, S. P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups (Clarendon Press, Oxford, 1985).Google Scholar
  11. 11.
    M. Aschbacher and G. Seitz, “Involutions in Shevalley groups over fields of even order,” Nagoya Math. J. 63, 1–91 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    D. Gorenstein and R. Lyons, The Local Structure of Finite Groups of Characteristic 2-Type, in Mem. Amer. Math. Soc. (Amer. Math. Soc., Providence, RI, 1983), Vol. 42, 276.zbMATHGoogle Scholar
  13. 13.
    K. Gomi, “Maximal p-local subgroups of S n and A n,” J. Fac. Sci. Univ. Tokyo Sec. IA Math. 19 (2), 215–229 (1972).zbMATHGoogle Scholar
  14. 14.
    V. I. Zenkov and Ya. N. Nuzhin, “On intersection of primary subgroups of odd order in finite almost simple groups,” Fundam. Prikl. Mat. 19 (6), 115–123 (2014) [J. Math. Sci. (New York), 221 (3), 384–390 (2017)].Google Scholar
  15. 15.
    V. I. Zenkov and A. I. Makosii, “On intersections of Sylow 2-subgroups in finite groups, I,” Vladikavkaz Mat. Zh. 11 (4), 16–21 (2009) [in Russian].MathSciNetzbMATHGoogle Scholar
  16. 16.
    V. I. Zenkov, “Intersections of two nilpotent subgroups in finite groups with socle L 2 (q),” Sibirsk. Mat. Zh. 57 (6), 1280–1290 (2016) [Sib. Math. J. 57 (6), 1002–1010 (2016)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsUral Branch of Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations