Mathematical Notes

, Volume 105, Issue 1–2, pp 204–215 | Cite as

Hartley Sets and Injectors of a Finite Group

  • N. T. Vorob’evEmail author
  • T. B. KaraulovaEmail author


By a Fitting set of a group G one means a nonempty set of subgroups \(\mathscr{F}\) of a finite group G which is closed under taking normal subgroups, their products, and conjugations of subgroups. In the present paper, the existence and conjugacy of \(\mathscr{F}\) -injectors of a partially π-solvable group G is proved and the structure of \(\mathscr{F}\)-injectors is described for the case in which \(\mathscr{F}\) is a Hartley set of G.


finite group Fitting set π-solvable group injector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Doerk and T. Hawkes, Finite Soluble Groups (Walter De Gruyter, Berlin, 1992).CrossRefzbMATHGoogle Scholar
  2. 2.
    W. Guo, Structure Theory for Canonical Classes of Finite Groups (Springer, Heidelberg, 2015).CrossRefzbMATHGoogle Scholar
  3. 3.
    A. Ballester–Bolinches and L. M. Ezquerro, Classes of Finite Groups (Springer, Dordrecht, 2006).zbMATHGoogle Scholar
  4. 4.
    B. Fischer, W. Gaschütz, and B. Hartley, “Injektoren endlicher auflösbarerGruppen,” Math. Z. 102, 337–339 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. A. Shemetkov, “Subgroups of π–solvable groups,” in Finite Groups (“Nauka i Tehnika”, Minsk, 1975), pp. 207–212 [in Russian].Google Scholar
  6. 6.
    W. Anderson, “Injectors in finite soluble groups,” J. Algebra 36 (3), 333–338 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. T. Vorob’ev and M. G. Semenov, “Injectors in Fitting sets of finite groups,” Mat. Zametki 97 (4), 516–528 (2015) [Math. Notes 97 (4), 521–530 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    B. Hartley, “On Fischer’s dualization of formation theory,” Proc. London Math. Soc. (3) 3 (2), 193–207 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. D’Arcy, “Locally defined Fitting classes,” J. Austral. Math. Soc. 20 (1), 25–32 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    W. Guo and N. T. Vorob’ev, “On injectors of finite soluble groups,” Comm. Algebra 36 (9), 3200–3208 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. G. Semenov, “Formula of an injector of a finite π–soluble group,” Probl. Fiz. Mat. Tekh. 4 (21), 77–88 (2014).zbMATHGoogle Scholar
  12. 12.
    D. Revin and E. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups,” J. Algebra 324 (12), 3614–3652 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N. Yang, W. Guo, and N. T. Vorob’ev, “On F–injectors of Fitting set of a finite group,” Comm. Algebra 46 (1), 217–229 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    W. B. Guo, “Injectors of finite groups,” Chinese Ann. Math. Ser. A 18 (2), 145–148 (1997).MathSciNetzbMATHGoogle Scholar
  15. 15.
    W. Guo, The Theory of Classes of Groups (Sci. Beijing Press, Beijing, 2000).Google Scholar
  16. 16.
    S. A. Chunikhin, Subgroups of Finite Groups (“Nauka i Tehnika”,Minsk, 1964) [in Russian].Google Scholar
  17. 17.
    M. J. Iranzo and F. Pérez Monazor, “F–Constraint with respect to a Fitting class,” Arch. Math. (Basel) 46 (3), 205–210 (1986).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Vitebsk State UniversityVitebskBelarus

Personalised recommendations