Abstract
A particular class of estimates related to the Nelson–Erdős–Hadwiger problem is studied. For two types of spaces, Euclidean and spaces with metric ℓ1, certain series of distance graphs of small dimensions are considered. Independence numbers of such graphs are estimated by using the linear-algebraic method and combinatorial observations. This makes it possible to obtain certain lower bounds for the chromatic numbers of the spaces mentioned above and, for each case, specify a series of graphs leading to the strongest results.
Similar content being viewed by others
References
A. Soifer, Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of Its Creators (Springer, New York, 2009).
L. A. Székely, “Erdős on the unit distances and the Szemerédi–Trotter theorems,” in Paul Erdős and his Mathematics, II, Bolyai Soc. Math. Stud. (János Bolyai Math. Soc., Budapest, 2002), Vol. 11, pp. 649–666.
A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in Discrete Geometry and Algebraic Combinatorics, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2014), Vol. 625, pp. 93–109.
A. M. Raigorodskii, “Coloring Distance Graphs and Graphs of Diameters,” in Thirty Essays on Geometric Graph Theory (Springer, New York, 2013), pp. 429–460.
A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56 (1 (337)), 107–146 (2001) [RussianMath. Surveys 56 (1), 103–139 (2001)].
A. M. Raigorodskii, “Combinatorial geometry and coding theory,” Fund. Inform. 145 (3), 359–369 (2016).
P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry (Springer, New York, 2005).
K. Cantwell, “Finite Euclidean Ramsey theory,” J. Combin. Theory Ser. A 73 (2), 273–285 (1996).
K. B. Chilakamarri, “The unit–distance graph problem: a brief survey and some new results,” Bull. Inst. Combin. Appl. 8, 39–60 (1993).
J. Cibulka, “On the chromatic number of real and rational spaces,” Geombinatorics 18 (2), 53–65 (2008).
G. Exoo and D. Ismailescu, On the Chromatic Number of Rn for Small Values of n, arXiv: http://arxiv. org/abs/1408. 2002 (2014).
G. Exoo, D. Ismailescu, and M. Lim, “On the chromatic number of R4,” Discrete Comput. Geom. 52 (2), 416–423 (2014).
M. Kahle and B. Taha, “New lower bounds on χ(Rd), d = 8,...,12,” Geombinatorics 24 (3), 109–116 (2015).
A. B. Kupavskii and A. M. Raigorodskii, “On the chromatic number R9,” Fundam. Prikl. Mat. 14 (5), 139–154 (2008) [J. Math. Sci. (New York) 163 (6), 120–131 (2009)].
D. G. Larman and C. A. Rogers, “The realization distances within sets in Euclidean space,” Mathematika 19, 1–24 (1972).
Z. Nagy, “A certain constructive estimate of the Ramsey number,” Mat. Lapok 23 (301–302), 26 (1972).
O. Nechushtan, “Note on the space chromatic number,” DiscreteMath. 256 (1–2), 499–507 (2002).
D. D. Cherkashin and A. M. Raigorodskii, “On the chromatic numbers of the spaces of small dimension,” Dokl. Akad. Nauk 472 (1), 11–12 (2017).
D. Cherkashin, A. Kulikov, and A. Raigorodskii, “On the chromatic numbers of small–dimensional Euclidean spaces,” Discrete Appl. Math. 243, 125–131 (2018).
A. É. Guterman, V. K. Lyubimov, A. M. Raigorodskii, and A. S. Usachev, “On the independence number of distance graphs with vertices in −1, 0, 1n,” Mat. Zametki 86 (5), 794–796 (2009) [Math. Notes 86 (5), 744–746 (2009)].
V. K. Lyubimov and A. M. Raigorodskii, “Lower bounds for the independence numbers of some distance graphs with vertices in −1, 0, 1n,” Dokl. Akad. Nauk 427 (4), 458–460 (2009) [Dokl. Math. 80 (1), 547–549 (2009)].
A. M. Raigorodskii and A. B. Kupavskii, “On the chromatic numbers of small–dimensional Euclidean spaces,” in European Conference on Combinatorics, Graph Theory and Applications, Electron. Notes Discrete Math. (Elsevier Sci. B. V., Amsterdam, 2009), Vol. 34, pp. 435–439.
P. Frankl and R. Wilson, “Intersection theorems with geometric consequences,” Combinatorica 1 (4), 357–368 (1981).
A. M. Raigorodskii, “On the chromatic number of a space,” Uspekhi Mat. Nauk 55 (2 (332)), 147–148 (2000) [Russian Math. Surveys 55 (2), 351–352 (2000)].
M. Benda and M. Perles, “Colorings of metric spaces,” Geombinatorics 9 (3), 113–126 (2000).
Z. Füredi and J.–H. Kang, “Distance graphs on Zn with l1–norm,” Theoret. Comput. Sci. 319 (1–3), 357–366 (2004).
Y. Katznelson, “Chromatic numbers of Cayley graphs on Z and recurrence,” Combinatorica 21 (2), 211–219 (2001).
A. B. Kupavskii, “On the coloring of spheres embedded in Rn,” Mat. Sb. 202 (6), 83–110 (2011) [Sb. Math. 202 (6), 859–886 (2011)].
A. B. Kupavskii, “On lifting a lower bound for the chromatic number Rn to higher dimensions,” Dokl. Akad. Nauk 429 (3), 305–308 (2009)
A. M. Raigorodskii, “On the chromatic number of a space with two forbidden distances,” Dokl. Akad. Nauk 408 (5), 601–604 (2006)
N. G. Moshchevitin and A. M. Raigorodskii, “Colorings of the Space Rn with Several Forbidden Distances,” Mat. Zametki 81 (5), 733–743 (2007) [Math. Notes 81 (5), 656–664 (2007)].
A. M. Raigorodskii and I. M. Shitova, “Chromatic numbers of real and rational spaces with real or rational forbidden distances,” Mat. Sb. 199 (4), 107–142 (2008) [Sb. Math. 199 (4), 579–612 (2008)].
A. M. Raigorodskii and I. M. Shitova, “On the chromatic number of Euclidean space and the Borsuk problem,” Mat. Zametki 83 (4), 636–639 (2008) [Math. Notes 83 (4), 579–582 (2008)].
E. S. Gorskaya, I. M. Mitricheva, V. Yu. Protasov, and A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods,” Mat. Sb. 200 (6), 3–22 (2009) [Sb. Math. 200 (6), 783–801 (2009)].
A. M. Raigorodskii, “On the chromatic numbers of the spheres in Euclidean space,” Dokl. Akad. Nauk 432 (2), 174–177 (2010) [Dokl. Math. 81 (3), 379–382 (2010)].
A. M. Raigorodskii, “On the chromatic numbers of spheres in Rn,” Combinatorica 32 (1), 111–123 (2012).
O. A. Kostina and A. M. Raigorodskii, “On the lower bounds for the chromatic number of sphere,” Dokl. Akad. Nauk 463 (6), 639–641 (2015).
A. V. Berdnikov and A. M. Raigorodskii, “On the chromatic number of Euclidean space with two forbidden distances,” Mat. Zametki 96 (5), 790–793 (2014) [Math. Notes 96 (5), 827–830 (2014)].
A. B. Kupavskii, “On the chromatic number of Rn with an arbitrary norm,” DiscreteMath. 311 (6), 437–440 (2011).
A. B. Kupavskii, “On the chromatic number of Rn with a set of forbidden distances,” Dokl. Akad. Nauk 435 (6), 740–743 (2010) [Dokl. Math. 82 (3), 963–966 (2010)].
E. I. Ponomarenko and A. M. Raigorodskii, “New lower bound for the chromatic number of a rational space with one and two forbidden distances,” Mat. Zametki 97 (2), 255–261 (2015) [Math. Notes 97 (2), 249–254 (2015)].
A. Ya. Kanel’–Belov, V. A. Voronov, and D. D. Cherkashin, “On the chromatic number of infinitesimal plane layer,” Algebra Anal. 29 (5), 68–89 (2017) [St. PetersburgMath. J. 29 (5), 761–775 (2018)].
A. A. Sagdeev, “On the Frankl–Rödl theorem,” Izv. Ross. Akad. Nauk Ser. Mat. 82 (6), 128–157 (2018) [Izv. Math. 82 (6), 1196–1224 (2018)].
A. A. Sagdeev, “Improved Frankl–Rödl theorem and some of its geometric consequences,” Probl. Peredachi Inf. 54 (2), 45–72 (2018) [Probl. Inf. Transmission 54 (2), 139–164 (2018)].
A. A. Sagdeev, “Exponentially Ramsey sets,” Probl. Peredachi Inf. [Probl. Inf. Transmission] (in press).
R. I. Prosanov, A. M. Raigorodskii, and A. A. Sagdeev, “Improvements of the Frankl–Rödl theorem and the geometric consequences,” Dokl. Akad. Nauk 475 (2), 137–139 (2017) [Dokl. Math. 96 (1), 336–338 (2017)].
R. I. Prosanov, “Upper bounds for the chromatic numbers of Euclidean spaces with forbidden Ramsey sets,” Mat. Zametki 103 (2), 248–257 (2018) [Math. Notes 103 (2), 243–250 (2018)].
A. M. Raigorodskii and A. A. Sagdeev, “On a bound in extremal combinatorics,” Dokl. Akad. Nauk 478 (3), 271–273 (2018) [Dokl. Math. 97 (1), 47–48 (2018)].
A. V. Berdnikov, “Estimate for the chromatic number of Euclidean space with several forbidden distances,” Mat. Zametki 99 (5), 783–787 (2016) [Math. Notes 99 (5), 774–778 (2016)].
A. V. Berdnikov, “Chromatic number with several forbidden distances in the space with the q–metric,” J. Math. Sci. (N. Y. ) 227 (4), 395–401 (2017).
A. M. Raigorodskii, “The chromatic number of a space with the metric lq,” UspekhiMat. Nauk 59 (5 (359)), 161–162 (2004) [RussianMath. Surveys 59 (5), 973–975 (2004)].
L. Babai and P. Frankl, Linear Algebra Methods in Combinatorics, Part 1: Preliminary Version 2 (Department of Computer Science, The University of Chicago, 1992).
L. Bogolubsky, in arXiv: https://doi.org/https://github.com/LevBogolubsky/chrom_lower_linear_algebra.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Russian Text © L. I. Bogolyubsky, A. M. Raigorodskii, 2019, published in Matematicheskie Zametki, 2019, Vol. 105, No. 2, pp. 187–213.
Rights and permissions
About this article
Cite this article
Bogolyubsky, L.I., Raigorodskii, A.M. A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics ℓ1 and ℓ2. Math Notes 105, 180–203 (2019). https://doi.org/10.1134/S000143461901022X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S000143461901022X