Mathematical Notes

, Volume 105, Issue 1–2, pp 123–131 | Cite as

Extremal Solutions for Nonlinear First-Order Impulsive Integro-Differential Dynamic Equations

  • L. ZhangEmail author
  • Y. F. Xing


This paper is concerned with the initial-value problem for nonlinear first-order impulsive integro-differential equations on time scales \(\mathbb{T}\) . We establish certain existence criteria by using a fixed-point theorem for operator on cones, under which such problems have aminimal and amaximal solution lying in a corresponding region bounded by their lower and upper solutions.


time scale impulsive dynamic equation extremal solutions fixed point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Doctoral Dissertation (UniversitätWürzburg, 1988).zbMATHGoogle Scholar
  2. 2.
    S. Hilger, “Analysis on measure chains–A unified approach to continuous and discrete calculus,” Results Math. 18 (1–2), 18–56 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. P. Agarwal and M. Bohner, “Basic calculus on time scales and some of its applications,” ResultsMath. 35 (1–2), 3–22 (1999).MathSciNetzbMATHGoogle Scholar
  4. 4.
    R. P. Agarwal, M. Bohner, and P. Rehak, “Half–linear dynamic equations,” Kluwer Acad. Publ. 1 (5) 1–57 (2003).Google Scholar
  5. 5.
    M. Bohner and A. Peterson, Dynamic Equations on Time Scales (An Introduction with Applications, Birkhäser, Boston,MA, 2001).CrossRefzbMATHGoogle Scholar
  6. 6.
    M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales (Birkhäser, Boston, 2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    V. Lakshmikantham, S. Sivasundaram, and B. Kaymakcalan, “Dynamic Systems on Measure Chains,” Kluwer Acad. Publ. 370 (1–2), 125–135 (1996).MathSciNetzbMATHGoogle Scholar
  8. 8.
    L. Zhang, H. X. Li, and X. B. Zhang, “Periodic solutions of competition Lotka–Volterra dynamic system on time scales,” Comput. Math. Appl. 57 (7), 1204–211 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of ImpulsiveDifferential Equations(World Scientific, Singapore, 1989).Google Scholar
  10. 10.
    J. H. Liang, S. Y. Tang, and Robert A. Cheke, “Beverton–Holt discrete pestmanagement models with pulsed chemical control and evolution of pesticide resistance,” Cnmmun. Nonlinear Sci. 36 327–341 (2016).Google Scholar
  11. 11.
    T. Xu and F. Gao, “Global Synchronous Pulse Width Modulation of Distributed Inverters,” IEEE T. Power Electr.31 (9) 6237–6253 (2016).Google Scholar
  12. 12.
    Y. P. Yang, Y. N. Xiao, and J. H. Wu, “Pulse HIV Vaccination: Feasibility for Virus Eradication and Optimal Vaccination Schedule,” B. Math. Biol. 75 (5) 725–751 (2013).Google Scholar
  13. 13.
    C. Wu, K. Teo, Y. Zhou, and W. Yan, “Solving an identification problem as an impulsive optimal parameter selection problem,” Comput. Math. Appl. 50 (1) 217–229 (2005).Google Scholar
  14. 14.
    C. Wu, K. Teo, Y. Zhou, and W. Yan, “An optimal control problem involving impulsive integro–differential systems,” Optim. Meth. Software, 22 (3) 531–549 (2007).Google Scholar
  15. 15.
    B. Ahmad and J. Nieto, “Existence of extremal solutions for non–linear impulsive functional integro–differential equations with anti–periodic boundary conditions,” Arab. J. Sci. Eng, 1 (1) 1–12 (2009).Google Scholar
  16. 16.
    D. J. Guo, “Extremal solutions for nth–order impulsive integro–differential equations on the half–line in Banach spaces,” Nonlinear Anal. 65 (3) 677–696 (2006).Google Scholar
  17. 17.
    G. X. Song and X. L. Zhu, “Extremal solutions of periodic boundary value problems for first order integro–differential equations of mixed type,” J. Math. Anal. Appl. 300 (1) 1–11 (2004).Google Scholar
  18. 18.
    H. K. Xu and J. Nieto, “Extremal solutions of a class of nonlinear integro–differential equations in Banach space,” Proc. Amer. Math. Soc. 125 (9) 2605–2614 (1997).Google Scholar
  19. 19.
    S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations (Dekker, New York, 1994. )zbMATHGoogle Scholar
  20. 20.
    Y. Gong and X. Xiang, “A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales,” J. Ind. Manag. Optim. 5 (1) 1–10 (2009).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.College of ScienceNorthwest A&F UniversityYanglingChina

Personalised recommendations