Mathematical Notes

, Volume 105, Issue 1–2, pp 71–79 | Cite as

Second-Order Tangent-Valued Forms

  • K. V. PolyakovaEmail author


Tangent-valued forms, tangent and cotangent vectors of the first and the second order are considered. For an affine connection, second-order tangent-valued (vertical and horizontal) forms determining linear operators in the second-order tangent and cotangent spaces are constructed.


tangent-valued form second-order tangent and cotangent spaces affine connection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Laptev, “Fundamental infinitesimal structures of higher orders on a smooth manifold,” in Problems in Geometry: Proceedings of Geometry Seminar, Vol. 1, Itogi Nauki i Tekhniki (VINITI, Moscow, 1966), pp. 139–189 [in Russian].Google Scholar
  2. 2.
    L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, “Differential–geometric structures on manifolds,” in Problems in Geometry: Proceedings of Geometry Seminar, Vol. 9, Itogi Nauki i Tekhniki (VINITI,Moscow, 1979), pp. 5–246 [in Russian].Google Scholar
  3. 3.
    G. A. Sardanashvili, Geometry and Classical Fields, Vol. 1: Modern Methods of Field Theory (URSS, Moscow, 1996) [in Russian].zbMATHGoogle Scholar
  4. 4.
    L. Schwartz, “Géométrie différentielle du 2ème ordre, semi–martingales et équations différentielles stochastiques sur une variétédifférentielle,” in Séminaire de Probabilités XVI, 1980/81 Supplément: Géométrie Différentielle Stochastique, Lecture Notes in Math. (Springer, Berlin, 1982), Vol. 921, pp. 1–148.Google Scholar
  5. 5.
    M. Emery and P. A. Meyer, Stochastic Calculus in Manifolds (Springer, Berlin, 1989).CrossRefGoogle Scholar
  6. 6.
    P. A. Meyer, “Géométrie stochastiqua sans larmes,” in Séminaire de Probabilités XV 1979/80, Lecture Notes in Math. (Springer, Berlin, 1981), Vol. 850, pp. 44–102.Google Scholar
  7. 7.
    M. Emery, An Invitation to Second–Order Stochastic Differential Geometry, https://hal. archivesouvertes. fr/hal–00145073 (2007).Google Scholar
  8. 8.
    P. Catuogno, “A geometric Itôformula,” Mat. Contemp. 33, 85–99 (2005).MathSciNetGoogle Scholar
  9. 9.
    M. A. Akivis, Multidimensional Differential Geometry (Kalinin. Gos. Univ., Kalinin, 1977) [in Russian].zbMATHGoogle Scholar
  10. 10.
    W. Slebodzinski, Formes extérieures et leurs applications (PWN,Warszawa, 1954), Vol. 1.zbMATHGoogle Scholar
  11. 11.
    R. Sulanke and P. Wintgen, Differentialgeometrie und Faserbündel (Birkhäuser, Basel–Stuttgart, 1972; Mir,Moscow, 1975).CrossRefzbMATHGoogle Scholar
  12. 12.
    A. K. Rybnikov, “Affine connections of second order,” Mat. Zametki 29 (2), 279–290 (1981) [Math. Notes 29 (2), 143–149 (1981)].MathSciNetzbMATHGoogle Scholar
  13. 13.
    K. V. Polyakova, “Dual methods of study of differential–geometric structures,” in Differential Geometry of Manifolds of Figures (Kaliningrad, 2014), Vol. 45, pp. 92–104 [in Russian].Google Scholar
  14. 14.
    Yu. I. Shevchenko, Framings of Holonomic and Nonholonomic Smooth Manifolds (Kaliningrad, 1998) [in Russian].Google Scholar
  15. 15.
    R. L. Bishop and R. J. Crittenden, Geometry of Manifolds (Academic, New York, 1964; Mir, Moscow, 1967).zbMATHGoogle Scholar
  16. 16.
    M. M. Postnikov, Lectures in Geometry, Semester 4: Differential Geometry (Nauka, Moscow, 1988) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations