Skip to main content

Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System

This is a preview of subscription content, access via your institution.

References

  1. V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics (Amer. Math. Soc., Providence, RI, 2002).

    MATH  Google Scholar 

  2. G. R. Sell and Y. You, Dynamics of Evolutionary Equations (Springer, New York, 2002).

    Book  MATH  Google Scholar 

  3. D. A. Vorotnikov and V. G. Zvyagin, J. Math. FluidMech. 10 (1), 19 (2008).

    Article  Google Scholar 

  4. V. G. Zvyagin and D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics (Walter de Gruyter, Berlin, 2008).

    Book  MATH  Google Scholar 

  5. V. G. Zvyagin and S. K. Kondrat’ev, Uspekhi Mat. Nauk 69 (5 (419)), 81 (2014) [Russian Math. Surveys 69 (5), 845 (2014)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zvyagin.

Additional information

Original Russian Text © V. G. Zvyagin, N. N. Avdeev, 2018, published in Matematicheskie Zametki, 2018, Vol. 104, No. 6, pp. 937–941.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Avdeev, N.N. Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System. Math Notes 104, 922–926 (2018). https://doi.org/10.1134/S0001434618110366

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434618110366

Keywords

  • minimal trajectory attractor
  • global attractor
  • trajectory space
  • attractor of dynamical system