On the Irrationality Measures of Certain Numbers. II

Abstract

For the irrationalitymeasures of the numbers \(\sqrt {2k - 1} \) arctan\(\left( {\sqrt {2k - 1} /\left( {k - 1} \right)} \right)\), where k is an even positive integer, upper bounds are presented.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Hata, “Rational approximations to p and some other numbers,” Acta Arith. 63 (4), 335–349 (1993).

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    V. A. Androsenko and V. Kh. Salikhov, “The Marcovecchio integral and the irrationality measure of \(\frac{\pi }{{\sqrt 3 }}\) ,” Vestnik BGTU 34 (4), 129–132 (2011).

    Google Scholar 

  3. 3.

    R. Marcovecchio, “The Rhin–Viola method for log 2,” Acta Arith. 139 (2), 147–184 (2009).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    V. A. Androsenko, “Irrationality measure of the number \(\frac{\pi }{{\sqrt 3 }}\) ,” Izv. Ross. Akad. Nauk Ser. Mat. 79 (1), 3–20 (2015) [Izv.Math. 79 (1), 1–17 (2015)].

    MathSciNet  Article  Google Scholar 

  5. 5.

    Yu. V. Nesterenko, “On the irrationality measure of the number ln 2,” Mat. Zametki 88 (4), 549–564 (2010) [Math. Notes 88 (4), 530–543 (2010)].

    Article  MATH  Google Scholar 

  6. 6.

    M. G. Bashmakova, “Estimates for the exponent of irrationality for certain values of hypergeometric functions,” Mosc. J. Comb. Number Theory 1 (1), 67–78 (2011).

    MathSciNet  MATH  Google Scholar 

  7. 7.

    A. A. Polyanskii, “On the quadratic exponent of irrationality of ln 2,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 1, 25–30 (2012) [Moscow Univ.Math. Bull. 67 (1), 23–28 (2012)].

    MathSciNet  MATH  Google Scholar 

  8. 8.

    A. A. Polyanskii, “On the irrationality measure of certain numbers,” Mosc. J. Comb. Number Theory 1 (4), 80–90 (2011).

    MathSciNet  MATH  Google Scholar 

  9. 9.

    A. A. Polyanskii, “Quadratic irrationality measures of certain numbers,” Vestnik Moskov. Univ. Ser. I Mat. Mekh.Moskov. Univ., No. 5, 25–29 (2013) [Moscow Univ.Math. Bull. 68 (5), 237–240 (2013)].

    MathSciNet  MATH  Google Scholar 

  10. 10.

    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Pt. 2: Transcendental Functions (Cambridge Univ. Press, Cambridge, 1996; Editorial URSS, Moscow, 2002).

    Google Scholar 

  11. 11.

    A. A. Polyanskii, On the Irrationality Measures of Some Numbers, Cand. Sci. (Phys.–Math.) Dissertation (Izd. Moskov. Univ., Moscow, 2013), http:// polyanskii.com/ wp-content/ uploads/ thesis/ polyanskii-phd.pdf [in Russian].

    Google Scholar 

  12. 12.

    M. Hata, “ℂ2-saddle method and Beuker’s integral,” Trans. Amer.Math. Soc. 352 (10), 4557–4583 (2000).

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Polyanskii.

Additional information

Original Russian Text © A. A. Polyanskii, 2018, published in Matematicheskie Zametki, 2018, Vol. 103, No. 4, pp. 582–591.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polyanskii, A.A. On the Irrationality Measures of Certain Numbers. II. Math Notes 103, 626–634 (2018). https://doi.org/10.1134/S0001434618030306

Download citation

Keywords

  • irrationality measure