Skip to main content
Log in

Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Given α ∈ (0, 1) and c = h + , h, βR, the function fα,c: R → C defined as follows is considered: (1) fα,c is Hermitian, i.e., \({f_{\alpha ,c}}\left( { - x} \right)\overline {{f_{\alpha ,c}}\left( x \right)} ,x \in \mathbb{R};\), x ∈ R; (2) fα,c(x) = 0 for x > 1; moreover, on each of the closed intervals [0, α] and [α, 1], the function fα,c is linear and satisfies the conditions fα,c(0) = 1, fα,c(α) = c, and fα,c(1) = 0. It is proved that the complex piecewise linear function fα,c is positive definite on R if and only if m(α) ≤ h ≤ 1 − α and |β| ≤ γ(α, h), \(where m\left( \alpha \right) = \left\{ \begin{gathered} 0if1/\alpha \notin \mathbb{N}, \hfill \\ - \alpha if1/\alpha \in \mathbb{N}. \hfill \\ \end{gathered} \right.\) If m(α) ≤ h ≤ 1 − α and α ∈ Q, then γ(α, h) > 0; otherwise, γ(α, h) = 0. This result is used to obtain a criterion for the complete monotonicity of functions of a special form and prove a sharp inequality for trigonometric polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Manov and V. Zastavnyi, “Positive definiteness of piecewise-linear function,” Expo. Math. 35 (3), 357–361 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Lukacs, Characteristic Functions (Hafner Publ., New York, 1970).

    MATH  Google Scholar 

  3. R. E. Williamson, “Multiply monotone functions and their Laplace transforms,” Duke Math. J. 23, 189–207 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. P. Zastavnyi, “On positive definiteness of some functions,” J. Multivariate Anal. 73 (1), 55–81 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. I. Lizorkin, “Bounds for trigonometrical integrals and an inequality of Bernstein for fractional derivatives,” Izv. Akad. Nauk SSSR Ser. Mat. 29 (1), 109–126 (1965).

    MathSciNet  Google Scholar 

  6. R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation Functions (Kluwer Acad. Publ., Dordrecht, 2004).

    Book  Google Scholar 

  7. E. A. Gorin, “Bernstein inequalities from the point of view of operator theory,” Vestn. Kharkov. Univ. Ser. Prikl. Mat. Mekh. 205 (45), 77–105 (1980).

    MATH  Google Scholar 

  8. V. V. Arestov and P. Yu. Glazyrina, “Bernstein–Szegöinequality for fractional derivatives of trigonometric polynomials,” Trudy Inst. Mat. i Mekh. UrO RAN 20 (1), 17–31 (2014) [Proc. Steklov Inst. Math. (Suppl.) 288, Suppl. 1, 13–28 (2015)].

    Google Scholar 

  9. S. B. Gashkov, “Bernstein’s inequality, Riesz identity, and Euler’s formula for the series of inverse squares,” in Mat. Pros., Ser. 3 (Izd. MTsNMO, Moscow, 2014), Vol. 18, pp. 143–171 [in Russian].

    Google Scholar 

  10. O. L. Vinogradov, “Sharp error estimates for the numerical differentiation formulas on the classes of entire functions of exponential type,” Sibirsk. Mat. Zh. 48 (3), 538–555 (2007) [Sib. Math. J. 48 (3), 430–445 (2007)].

    MathSciNet  MATH  Google Scholar 

  11. N. I. Akhiezer, Lectures on Integral Transformations (Vyshcha Shkola, Kharkov, 1984) [in Russian].

    MATH  Google Scholar 

  12. N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions in Banach Spaces (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  13. Z. Sasvári, Positive Definite and Definitizable Functions (Akademie Verlag, Berlin, 1994).

    MATH  Google Scholar 

  14. T. M. Bisgaard and Z. Sasvári, Characteristic Functions and Moment Sequences. Positive Definiteness in Probability (Nova Sci. Publ., Huntington, NY, 2000).

    MATH  Google Scholar 

  15. Zh.-P. Kakhan, Absolutely Convergent Fourier Series (Mir, Moscow, 1976) [in Russian].

    Google Scholar 

  16. N. I. Akhiezer, Classical Moment Problem and Some Related Questions of Analysis (Fizmatgiz, Moscow, 1961) [in Russian].

    MATH  Google Scholar 

  17. W. Feller, “Completely monotone functions and sequences,” Duke Math. J. 5, 661–674 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Sasvári, Multivariate Characteristic and Correlation Functions, in De Gruyter Stud. Math. (Walter de Gruyter, Berlin, 2013), Vol.50.

  19. R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions, in De Gruyter Stud. Math. (Walter de Gruyter, Berlin, 2010), Vol.37.

  20. D. V. Widder, Laplace Transform (Princeton Univ. Press, Princeton, 1941).

    MATH  Google Scholar 

  21. E. Lieb and M. Loss, Analysis (Amer. Math. Soc., Providence, RI, 1997; Nauchn. Kniga, Novosibirsk, 1998), Vol.1.

  22. B. Sz.-Nagy, “über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall,” Ber. Verh. Sächs. Akad. Leipzig 90, 103–134 (1938).

    MATH  Google Scholar 

  23. S. A. Telyakovskii, “Norms of trigonometrical polynomials and approximation of differentiable functions by averages of their Fourier series. I,” in Trudy Mat. Inst. Steklova, Vol. 62: Collection of Articles on Linear Methods of Summation of Fourier Series (Izd. AN SSSR, Moscow, 1961), pp. 61–97 [in Russian].

    Google Scholar 

  24. A. I. Kozko, “The exact constants in the Bernstein–Zygmund–Szegöinequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials,” East J. Approx. 4 (3), 391–416 (1998).

    MathSciNet  Google Scholar 

  25. V. P. Zastavnyi, “Positive definite functions and sharp inequalities for periodic functions,” Ural. Math. J. 3 (2), 82–99 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zastavnyi.

Additional information

Original Russian Text © V. P. Zastavnyi, A. D. Manov, 2018, published in Matematicheskie Zametki, 2018, Vol. 103, No. 4, pp. 519–535.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zastavnyi, V.P., Manov, A.D. Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications. Math Notes 103, 550–564 (2018). https://doi.org/10.1134/S0001434618030227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434618030227

Keywords

Navigation