Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 323–327 | Cite as

The Method of Lagrange Multipliers for the Class of Subsmooth Mappings

  • I. V. Orlov
Short Communications
  • 16 Downloads

Keywords

method of Lagrange multipliers strong compact subdifferential subsmoothness subsmooth variational Lagrangian subsmooth form of the inverse and implicit function theorems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lafontaine, Integration Functions with Values in a Banach Space (Springer, New York, 2015).Google Scholar
  2. 2.
    A. C. Chiang, Fundamental Methods of Mathematical Economics (Mc Graw Hill, New York, 1984).Google Scholar
  3. 3.
    A. V. Dmitruk, A. A. Milyutin, and N. P. Osmolovskii, UspekhiMat. Nauk 35 (6 (216)), 11 (1980) [Russian Math. Surveys 35 (6), 11 (1980)].Google Scholar
  4. 4.
    É. M. Galeev and V. M. Tikhomirov, Optimization: Theory, Examples, Problems (Editorial URSS, Moscow, 2000) [in Russian].Google Scholar
  5. 5.
    B. H. Pourciau, Amer. Math. Monthly 87 (6), 433 (1980).MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. P. Bertsecas, Nonlinear Programming (Athena Scientific, Belmont, MA, 1999).Google Scholar
  7. 7.
    S. Boyd and L. Vanderberghe, Convex Optimization (Cambridge Univ. Press, Cambridge, 2004).CrossRefGoogle Scholar
  8. 8.
    E. Zeidler, Applied Functional Analysis. Main Principles and Their Applications (Springer, New York, 1995).MATHGoogle Scholar
  9. 9.
    B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory (Springer- Verlag, Berlin, 2006).Google Scholar
  10. 10.
    A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings. A View from Variational Analysis (Springer, Dordrecht, 2009).CrossRefMATHGoogle Scholar
  11. 11.
    I. V. Orlov and F. S. Stonyakin, in SMFN (RUDN, Moscow, 2009), Vol. 34, pp. 121–138 [J. Math. Sci. 170 (2), 251 (2010)].Google Scholar
  12. 12.
    I. V. Orlov, in SMFN (RUDN, Moscow, 2014), Vol. 53, pp. 64–132 [J. Math. Sci. 218 (4), 430 (2016)].Google Scholar
  13. 13.
    I. V. Orlov, Mat. Zametki 99 (4), 631 (2016) [Math. Notes 99 (3–4), 619 (2016)].CrossRefGoogle Scholar
  14. 14.
    I. V. Orlov and S. I. Smirnova, Eurasian Math. J. 6 (4), 44 (2015).MathSciNetGoogle Scholar
  15. 15.
    V. D. Stepanov, Mat. Zametki 98 (6), 907 (2015) [Math. Notes 98 (5–6), 957 (2015)].CrossRefGoogle Scholar
  16. 16.
    M. L. Gol’dman, Mat. Zametki 100 (1), 30 (2016) [Math. Notes 100 (1–2), 24 (2016)].MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Orlov
    • 1
  1. 1.“Mathematical Notes,” Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations