Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 319–322 | Cite as

On the K-Functional for the Mixed Generalized Modulus of Smoothness

  • N. V. Omel’chenko
Short Communications

Keywords

mixed modulus of smoothness K-functional 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. V. Runovskii and N. V. Omel’chenko, Mat. Zametki 100 (3), 421 (2016) [Math. Notes 100 (3–4), 448 (2016)].MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. V. Runovskii, Mat. Sb. 208 (2), 70 (2017) [Sb. Math. 208 (2), 237 (2017)].MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. V. Runovskii, Approximation of Families of Polynomial Linear Operators, Doctoral (Phys.–Math.) Dissertation (Izd. Moskov. Univ., Moscow, 2010) [in Russian].Google Scholar
  4. 4.
    R. A. DeVore and G. G. Lorentz, Constructive Approximation (Springer-Verlag, Berlin, 1993).CrossRefMATHGoogle Scholar
  5. 5.
    S. M. Nikol’skii, Approximation of Functions of Several Variables and Embedding Theorems (Nauka, Moscow, 1977) [in Russian].Google Scholar
  6. 6.
    M. K. Potapov, Math. Balkanica 2, 183 (1972).MathSciNetGoogle Scholar
  7. 7.
    K. V. Runovskii, Several Questions of Approximation Theory, Cand. Sci. (Phys.–Math.) Dissertation (Izd. Moskov. Univ., Moscow, 1990) [in Russian].Google Scholar
  8. 8.
    M. K. Potapov and B. V. Simonov, VestnikMoskov. Univ. Ser. IMat. Mekh., No. 6, 31 (2014) [Moscow Univ. Math. Bull. 69 (6) 258 (2014)].Google Scholar
  9. 9.
    V. Hristov and K. Ivanov, Math. Balkanica (N. S.) 4 (3), 236 (1990).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.“Mathematical Notes,” Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations