Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 308–312 | Cite as

Best Polynomial Approximations and Widths of Classes of Functions in the Space L2

  • S. B. Vakarchuk
Short Communications

Keywords

best polynomial approximation Fourier series (ψ-β)-derivative generalized modulus of continuity n-width 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Shapiro, Acta Math. 120, 279 (1968).MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Boman and H. S. Shapiro, Ark. Mat. 9, 91 (1971).MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. G. Babenko, Trudy Inst. Mat. i Mekh. UrO RAN, Vol. 7: Approximation Theory. Asymptotic Expansions (2001), pp. 30–46, [Proc. Steklov Inst. Math. (Suppl.), Suppl. 1, S30 (2001)].Google Scholar
  4. 4.
    S. N. Vasil’ev, Dokl. Akad. Nauk 385 (1), 11 (2002) [Dokl. Math. 66 (1), 5 (2002)].MathSciNetGoogle Scholar
  5. 5.
    A. I. Kozko and A. V. Rozhdestvenskii, Mat. Zametki 73 (5), 783 (2003) [Math. Notes 73 (5–6), 736 (2003)].MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. V. Runovski, Mat. Zametki 95 (6), 899 (2014) [Math. Notes 95 (5–6), 833 (2014)].MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. I. Ivanov and Kha Tkhi Min’ Khué, Trudy Inst. Mat. i Mekh. UrO RAN (2014), Vol. 20, pp. 109–118 [Proc. Steklov Inst. Math. (Suppl.) 288, Suppl. 1, 88 (2015)].Google Scholar
  8. 8.
    D. V. Gorbachev, Trudy Inst. Mat. i Mekh. UrO RAN (2014), Vol. 20, pp. 83–91 [Proc. Steklov Inst. Math. (Suppl.) 288, Suppl. 1, 70 (2015)].Google Scholar
  9. 9.
    S. B. Vakarchuk, Ukr. Math. J. 68 (6), 823 (2016).MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. B. Vakarchuk, Ukr. Math. J. 68 (8), 1165 (2017).CrossRefGoogle Scholar
  11. 11.
    S. B. Vakarchuk, Ukr. Math. J. 68 (10), 1495 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Yu. Artamonov, Mat. Zametki 99 (6), 933 (2016) [Math. Notes 99 (5–6), 928 (2016)].CrossRefGoogle Scholar
  13. 13.
    K. Runovski and H-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint (Friedrich-Schiller-Universität Jena, Jena, 2011) [in Russian].Google Scholar
  14. 14.
    A. I. Stepanets, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1), 101 (1986) [Math. USSR-Izv. 28 (1), 99 (1987)].MathSciNetGoogle Scholar
  15. 15.
    A. I. Stepanets, Methods of Approximation Theory. I, in Trudy Inst. Mat. NAN Ukrainy (Inst. Mat. NAN Ukrainy, Kiev, 2002), Vol. 40 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Alfred Nobel Dnepropetrovsk UniversityDnepropetrovskUkraine

Personalised recommendations