Mathematical Notes

, Volume 103, Issue 1–2, pp 251–258 | Cite as

Real-Imaginary Conjugacy Classes and Real-Imaginary Irreducible Characters in Finite Groups

  • S. M. Robati


Let G be a finite group. A character χ of G is said to be real-imaginary if its values are real or purely imaginary. A conjugacy class C of a in G is real-imaginary if and only if χ(a) is real or purely imaginary for all irreducible characters χ of G. A finite group G is called real-imaginary if all of its irreducible characters are real-imaginary. In this paper, we describe real-imaginary conjugacy classes and irreducible characters and study some results related to the real-imaginary groups. Moreover, we investigate some connections between the structure of group G and both the set of all the real-imaginary irreducible characters of G and the set of all the real-imaginary conjugacy classes of G.


conjugacy classes irreducible characters real group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Chillag and A. Mann, “Nearly odd-order and nearly real finite groups,” Comm. Algebra 26 (7), 2041–2064 (1998).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, An ATLAS of Finite Groups (Clarendon Press, Oxfordz, 1985.)MATHGoogle Scholar
  3. 3.
    M. R. Darafsheh and S. M. Robati, “On Products of Irreducible Characters and Products of Conjugacy Classes in Finite Groups,” Comm. Algebra 41, 2879–2883 (2013).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    S. Dolfi, G. Navarro, and P. H. Tiep, “Primes dividing the degrees of the real characters,” Math. Z 259, 755–774 (2008).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    S. Dolfi, E. Pacifici, and L. Sanus, “Finite groups with real-valued irreducible characters of prime degree,” J. Algebra 320 (5), 2181–2195 (2008).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    The GAP group, GAP-Groups, Algorithms, and Programming, Version 4.7.4, http://www.gapsystem. org, 2014.Google Scholar
  7. 7.
    N. Gill and S. Anupam, “Real and strongly real classes in SLn(q),” J. Group Theory 14 (3), 437–459 (2011).MathSciNetMATHGoogle Scholar
  8. 8.
    N. Gill and S. Anupam, “Real and strongly real classes in PGLn(q) and quasi-simple covers of PSLn(q),” J. Group Theory 14 (3), 461–489 (2011).MathSciNetMATHGoogle Scholar
  9. 9.
    R. M. Guralnick, G. Navarro, and P. H. Tiep, “Real class sizes and real character degrees,” Math. Proc. Cambridge Philos. Soc. 150 (01), 47–71 (2011).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    I. M. Isaacs, Character Theory of Finite Groups (Academic Press, New York–San Francisco–London, 1976.)MATHGoogle Scholar
  11. 11.
    G. James and M. Liebeck, Representations and Characters of Groups (Cambridge University Press, 1993.)MATHGoogle Scholar
  12. 12.
    G. Navarro and P. H. Tiep, “Rational irreducible characters and rational conjugacy classes in finite groups,” Trans. Amer. Math. Soc. 360, 2443–2465 (2008).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    G. Navarro and P. H. Tiep, “Degrees of rational characters of finite groups,” Adv. Math. 224, 1121–1142 (2010).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    G. Navarro, L. Sanus, and P. H. Tiep, “Real characters and degrees,” Israel J. Math 171 (1), 157–173 (2009).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Imam Khomeini International UniversityQazvinIran

Personalised recommendations