Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 232–242 | Cite as

Hirzebruch Functional Equations and Krichever Complex Genera

  • I. V. Netai
Article
  • 11 Downloads

Abstract

As is well known, the two-parameter Todd genus and the elliptic functions of level d define n-multiplicative Hirzebruch genera if d divides n + 1. Both cases are special cases of the Krichever genera defined by the Baker–Akhiezer function. In the present paper, the inverse problem is solved. Namely, it is proved that only these properties define n-multiplicative Hirzebruch genera among all Krichever genera for all n.

Keywords

Hirzebruch genus elliptic function functional equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Buchstaber [Bukhshtaber] and I. V. Netay [Netai], “Hirzebruch functional equation and elliptic functions of level d,” Funktsional. Anal. Prilozhen. 49 (4), 1–17 (2015) [Functional Anal. Appl. 49 (4), 239–252 (2015)].MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. M. Buchstaber, T. E. Panov, and N. Ray, “Toric genera,” Int. Math. Res. Not. IMRN2010 (16), 3207–3262 (2010).MathSciNetMATHGoogle Scholar
  3. 3.
    V. M. Buchstaber and T. E. Panov, Toric Topology, in Math. Surveys Monogr. (Amer. Math. Soc., Providence, RI, 2015), Vol. 204.Google Scholar
  4. 4.
    I. M. Krichever, “Formal groups and the Atiyah–Hirzebruch formula,” Izv. AN SSSR Ser. Mat. 38 (6), 1289–1304 (1974) [Math. SSSR-Izv. 8, 1271–1285 (1974)].MathSciNetGoogle Scholar
  5. 5.
    O. R. Musin, “On rigid Hirzebruch genera,” Mosc. Math. J. 11 (1), 139–147 (2011).MathSciNetMATHGoogle Scholar
  6. 6.
    F. Hirzebruch, Th. Berger, and R. Jung, Manifolds and Modular Forms (Friedr. Vieweg & Sohn, Braunschweig, 1992).CrossRefMATHGoogle Scholar
  7. 7.
    F. Hirzebruch, “Elliptic genera of level N for complex manifolds,” in Differential Geometrical Methods in Theoretical Physics, NATOAdv. Sci. Inst. Ser. C Math. Phys. Sci. (Kluwer Acad. Publ., Dordrecht, 1988), Vol. 250, pp. 37–63.Google Scholar
  8. 8.
    V. M. Buchstaber [Bukhshtaber] and E. Yu. Netay [Netai], “CP(2)-multiplicative Hirzebruch genera and elliptic cohomology,” Uspekhi Mat. Nauk 69 (4 (418)), 181–182 (2014) [Russian Math. Surveys 69 (4), 757–759 (2014)].MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. M. Buchstaber [Bukhshtaber] and E. Yu. Bun’kova, “Manifolds of solutions for Hirzebruch functional equations,” in Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics, Trudy Mat. Ibst. Steklov. (MAIK, Moscow, 2015), Vol. 290, pp. 136–148 [Proc. Steklov. Inst. Mat. 290 (1), 125–137].Google Scholar
  10. 10.
    I. M. Krichever, “Generalized elliptic gebera and Baker–Akhiezer functions,” Mat. Zametki 47 (2), 34–45 (1990) [Math. Notes 47 (1–2), 132–142 (1990)].MATHGoogle Scholar
  11. 11.
    I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles,” Funktsional. Anal. Prilozhen. 14 (4), 45–54 (1980) [Functional Anal. Appl. 14 (4), 282–290 (1980)].MathSciNetMATHGoogle Scholar
  12. 12.
    W. Fulton, Young Tableaux. With Applications to Representation Theory and Geometry (Cambridge University Press, Cambridge, 1997; MCCME, Moscow, 2006).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Information Transmission ProblemsRussian Academy of Sciences (Kharkevich Institute)MoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations