Mathematical Notes

, Volume 103, Issue 1–2, pp 175–186 | Cite as

An Analog of the Brown–Schreiber–Taylor Theorem for Weighted Hyperbolic Shifts

  • V. V. Volchkov
  • Vit. V. Volchkov


In the present paper, using a development of the technique of transmutation mappings, we obtain the first weighted analog of the well-known Brown–Schreiber–Taylor theorem on the eigenvalues of the Laplacian for corresponding spaces of continuous functio


convolution operator spherical functions spherical transforms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Zalcman, “A bibliographic survey of the Pompeiu problem,” in Approximation by Solutions of Partial Differential Equations, NATOAdv. Sci. Inst. Ser. C Math. Phys. Sci. (Kluwer, Dordrecht, 1992), Vol. 365, pp. 185–194.CrossRefGoogle Scholar
  2. 2.
    L. Zalcman, “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem,” in Radon Transform and Tomography, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2001), Vol. 278, pp. 69–74.CrossRefGoogle Scholar
  3. 3.
    C. A. Berenstein and D. Struppa, “Complex Analysis and Convolution Equations,” in Complex Analysis–Many Variables–5, Itogi Nauki i Tekhniki, Current Problems in Mathematics. Fundamental Directions (VINITI, Moscow, 1989), Vol. 54, pp. 5–111 [in Russian].Google Scholar
  4. 4.
    V. V. Volchkov, Integral Geometry and Convolution Equations (Dordrecht, Kluwer Acad. Publ., 2003).CrossRefMATHGoogle Scholar
  5. 5.
    V. V. Volchkov and Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group (Springer, London, 2009).CrossRefMATHGoogle Scholar
  6. 6.
    V. V. Volchkov and Vit. V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces (Birkhäuser, Basel, 2013).CrossRefMATHGoogle Scholar
  7. 7.
    L. Brown, B. M. Schreiber, and B. A. Taylor, “Spectral synthesis and the Pompeiu problem,” Ann. Inst. Fourier (Grenoble) 23 (3), 125–154 (1973).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    S. C. Bagchi and A. Sitaram, “Sphericalmean periodic functions on semisimple Lie groups,” Pacific J. Math. 84 (2), 241–250 (1979).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    S. C. Bagchi and A. Sitaram, “The Pompeiu problem revisited,” Enseign. Math. (2) 36 (2), 67–91 (1990).MathSciNetMATHGoogle Scholar
  10. 10.
    S. Helgason, Differential Geometry and Symmetric Spaces (Academic Press, New York, 1962; Mir, Moscow, 1964).MATHGoogle Scholar
  11. 11.
    C. A. Berenstein and L. Zalcman, “Pompeiu’s problem on symmetric spaces,” Comment. Math. Helv. 55 (4), 593–621 (1980).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    N. Peyerimhoff and E. Samiou, “Spherical spectral synthesis and two-radius theorems on Damek–Ricci spaces,” Ark. Mat. 48 (1), 131–147 (2010).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    S. Thangavelu, “Mean periodic functions on phase space and the Pompeiu problem with a twist,” Ann. Inst. Fourier (Grenoble) 45 (4), 1007–1035 (1995).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    V. V. Volchkov and Vit. V. Volchkov, “Convolution equations in multidimensional domains and on the reduced Heisenberg group,” Mat. Sb. 199 (8), 29–60 (2008) [Sb. Math. 199 (7–8), 1139–1168 (2008)].MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    V. V. Volchkov and Vit. V. Volchkov, “Spectral analysis on the group of conformal automorphisms of the unit disk,” Mat. Sb. 207 (7), 57–80 (2016) [Sb. Math. 207 (7–8), 942–963 (2016)].MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    C. A. Berenstein and D. Pascuas, “Morera and mean-value type theorems in the hyperbolic disk,” Israel J. Math. 86 (1–3), 61–106 (1994).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. Érdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi Higher Transcendental Functions, Vols. I–III (McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954, 1955; Nauka, Moscow, 1973).Google Scholar
  18. 18.
    S. Helgason, Groups and Geometric Analysis (Academic Press, Inc., Orlando, FL, 1984; Mir, Moscow, 1987).MATHGoogle Scholar
  19. 19.
    L. Schwartz, “Théorie générale des fonctions moyenne-périodique,” Ann. of Math. (2) 48, 857–929 (1947).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups,” in Special Functions: Group Theoretical Aspects and Applications (D. Reidel Publ., Dordrecht, 1984), pp. 1–85.Google Scholar
  21. 21.
    L. Hörmander, The Analysis of Linear PartialDifferentialOperators. I. Distribution Theory and Fourier Analysis, 2nd ed. (Springer-Verlag, Berlin, 1990; transl. of the 1st ed. Mir, Moscow, 1986).Google Scholar
  22. 22.
    S. Helgason, Integral Geometry and Radon Transforms (Springer, New York, 2011).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Donetsk National UniversityDonetskUkraine

Personalised recommendations