Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 133–144 | Cite as

On Singular Perturbations of Quantum Dynamical Semigroups

  • A. S. Holevo
Article
  • 24 Downloads

Abstract

We consider two examples of quantum dynamical semigroups obtained by singular perturbations of a standard generator which are special case of unbounded completely positive perturbations studied in detail in [11]. In Sec. 2, we propose a generalization of an example in [15] aimed to give a positive answer to a conjecture of Arveson. In Sec. 3 we consider in greater detail an improved and simplified construction of a nonstandard dynamical semigroup outlined in our short communication [12].

Keywords

quantum dynamical semigroup singular perturbation nonstandard generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lindblad, “On generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of N-level systems,” J. Math. Phys. 17, 821–825 (1976).MathSciNetCrossRefGoogle Scholar
  3. 3.
    W. Feller, An Introduction to Probability Theory and Its Applications (J. Wiley, New York–London–Sydney, 1968), Vols. 1, 2.MATHGoogle Scholar
  4. 4.
    A. M. Chebotarev, Lectures on Quantum Probability, Sociedad Matematica Mexicana, Textos 14, Mexico 2000.Google Scholar
  5. 5.
    E. B. Davies, “Quantum dynamical semigroups and the neutron diffusion equation,” Rep. Math. Phys. 11, 169–188 (1977).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. M. Chebotarev, “Sufficient conditions for conservativity of minimal dynamical semigroups,” Theor. Math. Phys. 80, 192–211 (1989) [J. SovietMath. 56, 2697–2719 (1991)].CrossRefGoogle Scholar
  7. 7.
    A. M. Chebotarev and F. Fagnola, “Sufficient conditions for conservativity of quantum dynamical semigroups,” J. Funct. Anal. 118, 131–153 (1993).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Mohari and K. B. Sinha, “Stochastic dilation of minimal quantum dynamical semigroup,” Proc. Indian Acad. Sci., 102, 159–173 (1992).MathSciNetMATHGoogle Scholar
  9. 9.
    B. V. Bhat and K. R. Parthasarathy, “Markov dilations of nonconservative dynamical semigroups and quantum boundary theory,” Ann. Inst. H. Poincare, Ser. B 31, 601–652 (1995).MathSciNetMATHGoogle Scholar
  10. 10.
    A. S. Holevo, “On the structure of covariant dynamical semigroups,” J. Funct. Anal. 131, 255–278 (1995).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. S. Holevo, “Excessive maps, “arrival times” and perturbations of dynamical semigroups,” Izvestiya: Mathematics 59 (6), 1311–1325 (1995).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. S. Holevo, “There exists a nonstandard dynamical semigroup on B(H),” Uspekhi Mat. Nauk. 51 (6), 225–226 (1996).MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis and Self-Adjointness (Academic Press, New York, 1975; Mir, Moscow, 1978).Google Scholar
  14. 14.
    A. S. Holevo, “On dissipative stochastic equations in a Hilbert space,” Probab. Theory Rel. Fields 104, 483–500 (1996).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    W. Arveson, “The domain algebra of a CP-semigroup,” Pacific. J. Math. 203 (1), 67–77 (2002).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    S. Alazzawi and B. Baumgartner, Generalized Kraus Operators and Generators of Quantum Dynamical Semigroups, arXiv:1306.4531.Google Scholar
  17. 17.
    S. M. Nikol’sky, “Approximation of Functions of Several Variables and Embedding Theorems,” Nauka, Moscow 1977, Sec. 4.1.Google Scholar
  18. 18.
    V. S. Vladimirov, Equations ofMathematical Physics, 5th ed. (Nauka, Moscow, 1988).Google Scholar
  19. 19.
    I. Siemon, A. S. Holevo, and R. F. Werner, “Unbounded Generators of Dynamical Semigroups,” Open Syst. Inf. Dyn. 24 (4), 1740015 (2017).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations