Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 111–117 | Cite as

On the Chromatic Numbers of Rational Spaces

  • A. A. Sokolov
Article
  • 8 Downloads

Abstract

We consider the notion of affine chromatic number of a rational space introduced by E. I. Ponomarenko and A. M. Raigorodskii and describe its relationship with chromatic numbers of rational spaces.

Keywords

chromatic number rational space unit distance graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Soifer, The Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of Its Creators (Springer, New York, 2009).MATHGoogle Scholar
  2. 2.
    H. Hadwiger, “Ein Überdeckungssatz für den Euklidischen Raum,” PortugaliaeMath. 4, 140–144 (1944).MATHGoogle Scholar
  3. 3.
    A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” in Thirty Essays on Geometric Graph Theory (Springer, New York, 2013), pp. 429–460.CrossRefGoogle Scholar
  4. 4.
    O. Nechushtan, “Note on the space chromatic number,” DiscreteMath. 256 (1-2), 499–507 (2002).MathSciNetMATHGoogle Scholar
  5. 5.
    D. Coulson, “A 15-Coloring of 3-Space omitting distance one,” DiscreteMath. 256 (1–2), 83–90 (2002).MathSciNetMATHGoogle Scholar
  6. 6.
    A. M. Raigorodskii, “On the chromatic number of a space,” Uspekhi Mat. Nauk 55 (2 (332)), 147–148 (2000) [Russian Math. Surveys 55 (2), 351–352 (2000)].MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D. G. Larman and C. A. Rogers, “The realization of distances within sets in Euclidean space,” Mathematika 19, 1–24 (1972).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. Benda and M. Perles, “Colorings of metric spaces,” Geombinatorics 9 (3), 113–126 (2000).MathSciNetMATHGoogle Scholar
  9. 9.
    D. R. Woodall, “Distances realized by sets covering the plane,” J. Combinatorial Theory Ser. A 14, 187–200 (1973).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    E. I. Ponomarenko and A. M. Raigorodskii, “New estimates in the problem of the number of edges in a hypergraph with forbidden intersections,” Problemy Peredachi Informatsii 49 (4), 98–104 (2013) [Probl. Inform. Transm. 49 (4), 384–390 (2013)].MathSciNetMATHGoogle Scholar
  11. 11.
    E. I. Ponomarenko and A. M. Raigorodskii, “New lower bound for the chromatic number of a rational space with one and two forbidden distances,” Mat. Zametki 97 (2), 255–261 (2015) [Math. Notes 97 (1–2), 249–254 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    P. Johnson, A. Schneider, and M. Tiemeyer, “B1(Q3) = 4,” Geombinatorics 16 (4), 356–362 (2007).MathSciNetGoogle Scholar
  13. 13.
    E. I. Ponomarenko and A. M. Raigorodskii, “On the chromatic number of the space Qn,” Trudy Mosk. Fiz. Tekhn. Inst. 4 (1), 127–130 (2012).Google Scholar
  14. 14.
    P. Erdos, “Graph theory and probability,” Canad. J. Math. 11, 34–38 (1959).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Axenovich, J. Choi, M. Lastrina, T. McKay, J. Smith, and B. Stanton, “On the chromatic number of subsets of the euclidean plane,” Graphs Combin. 30 (1), 71–81 (2014).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    K. Fischer, “Additive K-colorable extensions of the rational plane,” DiscreteMath. 82 (2), 181–195 (1990).MathSciNetMATHGoogle Scholar
  17. 17.
    P. D. Johnson Jr., “Two-colorings of real quadratic extensions of Q2 that forbid many distances,” Congr. Numer. 60, 51–58 (1987).MathSciNetGoogle Scholar
  18. 18.
    A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in Discrete Geometry and Algebraic Combinatorics, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2014), Vol. 625, pp. 93–109.Google Scholar
  19. 19.
    A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56 (1 (337)), 107–146 (2001) [RussianMath. Surveys 56 (1), 103–139 (2001)].MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry (Springer, New York, 2005).MATHGoogle Scholar
  21. 21.
    H. Maehara, “Embedding a polytope in a lattice,” Discrete Comput. Geom. 13 (3–4), 585–592 (1995).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. M. Raigorodskii, “On distance graphs with large chromatic number but without large simplices,” Uspekhi Mat. Nauk 62 (6 (378)), 187–188 (2007) [RussianMath. Surveys 62 (6), 1224–1225 (2007)].MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    A. M. Raigorodskii and O. I. Rubanov, “Small clique and large chromatic number,” in European Conference on Combinatorics, Graph Theory and Applications, Electron. Notes DiscreteMath. (Elsevier Sci. B. V., Amsterdam, 2009), Vol. 34, pp. 441–445.Google Scholar
  24. 24.
    A. M. Raigorodskii and O. I. Rubanov, “On the clique and the chromatic numbers of high-dimensional distance graphs,” in Number Theory and Applications (Hindustan Book Agency, New Delhi, 2009), pp. 149–155.CrossRefGoogle Scholar
  25. 25.
    A. M. Raigorodskii and O. I. Rubanov, “Distance graphs with large chromatic number and without large cliques,” Mat. Zametki 87 (3), 417–428 (2010) [Math. Notes 87 (3–4), 392–402 (2010)].MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    A. B. Kupavskii and A. M. Raigorodskii, “Distance graphs with large chromatic numbers and small clique numbers,” Dokl. Ross. Akad. Nauk 444 (5), 483–487 (2012) [Dokl. Math. 85 (3), 394–398 (2012)].MathSciNetMATHGoogle Scholar
  27. 27.
    A. B. Kupavskii and A. M. Raigorodskii, “Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii,” Mat. Sb. 204 (10), 47–90 (2013) [Sb. Math. 204 (10), 1435–1479 (2013)].CrossRefMATHGoogle Scholar
  28. 28.
    E. E. Demekhin, A. M. Raigorodskii, and O. I. Rubanov, “Distance graphs having large chromatic numbers and containing no cliques or cycles of a given size,” Mat. Sb. 204 (4), 49–78 (2013) [Sb. Math. 204 (4), 508–538 (2013)].CrossRefMATHGoogle Scholar
  29. 29.
    A. B. Kupavskii, “Distance graphs with large chromatic number and arbitrary girth,” Mosc. J. Comb. Number Theory 2 (2), 52–62 (2012).MathSciNetMATHGoogle Scholar
  30. 30.
    N. Alon and A. Kupavskii, “Two notions of unit distance graphs,” J. Combin. Theory Ser. A 125, 1–17 (2014).MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    A. B. Kupavskii, “Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers,” Izv. Ross. Akad. Nauk Ser. Mat. 78 (1), 65–98 (2014) [Izv. Math. 78 (1), 59–89 (2014)].MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    P. O’Donnell, “Arbitrary girth, 4-chromatic unit distance graphs in the plane. I. Graph description,” Geombinatorics 9 (No. 3), 145–152 (2000).MathSciNetMATHGoogle Scholar
  33. 33.
    P. O’Donnell, “Arbitrary girth, 4-chromatic unit distance graphs in the plane. II. Graph embedding,” Geombinatorics 9 (4), 180–193 (2000).MathSciNetMATHGoogle Scholar
  34. 34.
    O. I. Rubanov, “Chromatic numbers of 3-dimensional distance graphs containing no tetrahedra,” Mat. Zametki 82 (5), 797–800 (2007) [Math. Notes 82 (5–6), 718–721 (2007)].MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations