Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 104–110 | Cite as

On the Calabi–Yau Compactifications of Toric Landau–Ginzburg Models for Fano Complete Intersections

  • V. V. Przyjalkowski
Article
  • 14 Downloads

Abstract

It is well known that Givental’s toric Landau–Ginzburg models for Fano complete intersections admit Calabi–Yau compactifications. We give an alternative proof of this fact. As a consequence of this proof, we obtain a description of the fibers over infinity of the compactified toric Landau–Ginzburg models.

Keywords

Calabi–Yau compactification toric Landau–Ginzburg model complete intersection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Givental, “A mirror theorem for toric complete intersections,” in Topological Field Theory, Primitive Forms and Related Topics, Progr. Math. (Birkhäuser Boston, Boston, MA, 1998), Vol. 160, pp. 141–175.CrossRefGoogle Scholar
  2. 2.
    K. Hori and C. Vafa, Mirror Symmetry, arXiv: hep-th/0002222 (2000).MATHGoogle Scholar
  3. 3.
    V. V. Przyjalkowski, “Weak Landau–Ginzburg models for smooth Fano threefolds,” Izv. Ross. Akad. Nauk Ser. Mat. 77 (4), 135–160 (2013) [Izv. Math. 77 (4), 772–794 (2013)].MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    N. O. Ilten, J. Lewis, and V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models,” J. Algebra 374, 104–121 (2013).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    V. Przyjalkowski and C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models,” Int. Math. Res. Not. IMRN 2015 (21), 11302–11332 (2015).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D. Auroux, L. Katzarkov, and D. Orlov, “Mirror symmetry for Del Pezzo surfaces: vanishing cycles and coherent sheaves,” Inv. Math. 166 (3), 537–582 (2006).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L. Katzarkov, M. Kontsevich, and T. Pantev, “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models,” J. Differential Geom. 105 (1), 55–117 (2017).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    V. Lunts and V. Przyjalkowski, Landau–Ginzburg Hodge Numbers for Mirrors of Del Pezzo Surfaces, arXiv: 1607.08880 (2016).MATHGoogle Scholar
  9. 9.
    V. V. Przyjalkowski, “Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano threefolds,” Mat. Sb. 208 (7), 84–108 (2017) [Sb. Math. 208 (7), 992–1013 (2017)].MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    T. Coates, A. Corti, S. Galkin, and A. Kasprzyk, “Quantum periods for 3-dimensional Fano manifolds,” Geom. Topol. 20 (1), 103–256 (2016).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Yu. I. Manin, Frobenius manifolds, Quantum Cohomology, and Moduli Spaces (Faktorial, Moscow, 2002) [in Russian].MATHGoogle Scholar
  12. 12.
    V. Przyjalkowski, “On Landau–Ginzburg models for Fano varieties,” Commun. Number Theory Phys. 1 (4), 713–728 (2008).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    S. O. Gorchinskiy and D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring,” Trudy Mat. Inst. Steklov 294, 54–75 (2016) [Proc. Steklov Inst. Math. 294, 47–66 (2016)].MathSciNetMATHGoogle Scholar
  14. 14.
    S. O. Gorchinskiy and D. V. Osipov, “Higher-dimensional Contou–Carrère symbol and continuous automorphisms,” Funktsional. Anal. Prilozhen. 50 (4), 26–42 (2016) [Functional Anal. Appl. 50 (4), 268–280 (2016)].MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    S. O. Gorchinskiy and D. V. Osipov, “A higher-dimensional Contou–Carrère symbol: local theory,” Mat. Sb. 206 (9), 21–98 (2015) [Sb. Math. 206 (9), 1191–1259 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk, Fano Varieties and Extremal Laurent Polynomials, A Collaborative Research Blog, http://coates. ma. ic. ac. uk/fanosearch.Google Scholar
  17. 17.
    N. Ilten, A. Kasprzyk, L. Katzarkov, V. Przyjalkowski, and D. Sakovics, Projecting Fanos in the Mirror, Preprint.Google Scholar
  18. 18.
    C. Doran, A. Harder, L. Katzarkov, J. Lewis, and V. Przyjalkowski, Modularity of Fano Threefolds, Preprint.Google Scholar
  19. 19.
    V. Przyjalkowski and C. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians of planes,” Bull. Korean Math. Soc. 54 (5), 1527–1575 (2017).MathSciNetGoogle Scholar
  20. 20.
    V. V. Przyjalkowski and K. A. Shramov, “On weak Landau–Ginzburg models for complete intersections in Grassmannians,” Uspekhi Mat. Nauk 69 (6 (420)), 181–182 (2014) [Russian Math. Surveys 69 (6), 1129–1131 (2014)].MathSciNetMATHGoogle Scholar
  21. 21.
    V. V. Przyjalkowski and K. A. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians,” Trudy Mat. Inst. Steklov 290, 102–113 (2015) [Proc. Steklov Inst. Math. 290 (1), 91–102 (2015)].MathSciNetMATHGoogle Scholar
  22. 22.
    T. Coates, A. Kasprzyk, and T. Prince, “Four-dimensional Fano toric complete intersections,” Proc. R. Soc. A 471 (20140704) (2015).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    C. Doran and A. Harder, “Toric Degenerations and the Laurent polynomials related to Givental’s Landau–Ginzburg models,” Canad. J. Math. 68 (4), 784–815 (2016).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    V. Przyjalkowski, “Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models,” Cent. Eur. J. Math. 9 (5), 972–977 (2011).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    V. Przyjalkowski and C. Shramov, Nef Partitions for Codimension 2 Weighted Complete Intersections, arXiv: 1702.00431 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations