Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 96–103 | Cite as

An Analog of Titchmarsh’s Theorem for the Fourier–Walsh Transform

  • S. S. Platonov
Article
  • 19 Downloads

Abstract

Using the Fourier–Walsh transform on ℝ+ = [0,+∞), we prove a dyadic analog of the classical Titchmarsh theorem on the description of the image under the Fourier transformation of the set of functions satisfying the Lipschitz condition in L2.

Keywords

Fourier–Walsh transform Lipschitz conditions dyadic harmonic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Titchmarsh, Introduction to the Theory of Fourier Integrals (Oxford Univ. Press, Oxford, 1948 (2nd ed.); Gostekhizdat, Moscow, 1948).MATHGoogle Scholar
  2. 2.
    S. S. Platonov, “The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces,” Sibirsk. Mat. Zh. 46 (6), 1374–1387 (2005) [Sib. Math. J. 46 (6), 1108–1118 (2005)].MathSciNetMATHGoogle Scholar
  3. 3.
    M. S. Younis, “Fourier transform of Lipschitz functions on the hyperbolic plane,” Internat. J. Math. Math. Sci. 21 (2), 397–401 (1998).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    R. Daher and M. Hamma, “An analog of Titchmarsh’s theorem of Jacobi transform,” Int. J. Math. Anal. (Ruse) 6 (17-20), 975–981 (2012).MathSciNetMATHGoogle Scholar
  5. 5.
    M. Maslouhi, “An analog of Titchmarsh’s theorem for the Dunkl transform,” Integral Transforms Spec. Funct. 21 (9-10), 771–778 (2010).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    F. Schipp, W. R. Wade, and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis (Adam Hilger, Bristol, 1990) [in Russian].MATHGoogle Scholar
  7. 7.
    B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Series and Walsh Transforms. Theory and Applications (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  8. 8.
    B. I. Golubov, “Dyadic distributions,” Mat. Sb. 198 (2), 67–90 (2007) [Sb. Math. 198 (2), 207–230 (2007)].MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    B. I. Golubov, “A dyadic analogue of Wiener’s Tauberian theorem and some related questions,” Izv. Akad. Nauk Ser. Mat. 67 (1), 33–58 (2003) [Izv. Math. 67 (1), 29–53 (2003)].MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    B. I. Golubov, “On an analogue of Hardy’s inequality for the Walsh-Fourier,” Izv. Akad. Nauk Ser. Mat. 65 (3), 3–14 (2001) [Izv. Math. 65 (3), 425–435 (2001)].MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. I. Rubinshtein, “Moduli of continuity of functions, defined on a zero-dimensional group,” Mat. Zametki 23 (3), 379–388 (1978) [Math. Notes 23 (3), 205–211 (1978)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Petrozavodsk State UniversityPetrozavodskRussia

Personalised recommendations