Mathematical Notes

, Volume 103, Issue 1–2, pp 54–58 | Cite as

Theorems on Strong Paracompactness of Product Spaces

  • S. Al Ghour


Several sufficient conditions for product space to be strongly paracompact are given.


product topology strongly paracompact ultraparacompact C-scattered 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Dowker, “Mapping theorems for non-compact spaces,” Amer. J. Math. 69, 200–242 (1947).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    V. Ponomarev, “On paracompact spaces and continuous mappings of them,” Dokl. Akad. Nauk SSSR 143, 46–49 (1962).MathSciNetGoogle Scholar
  3. 3.
    H. Z. Hdeib, “On the product of paracompact spaces,” Questions Answers Gen. Topology 5 (2), 229–236 (1987).MathSciNetMATHGoogle Scholar
  4. 4.
    R. Engelking, General Topology, 2nd ed. (Heldermann Verlag, Berlin, 1989).MATHGoogle Scholar
  5. 5.
    V. Ponomarev, “Axioms of countability and continuous mappings,” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8, 127–134 (1960).MathSciNetMATHGoogle Scholar
  6. 6.
    R. L. Ellis, “Extending continuous functions on zero-dimensional spaces,” Math. Ann. 186, 114–122 (1970).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Yu. M. Smirnov, “On strongly paracompact spaces,” Izv. Akad. Nauk SSSR. Ser. Mat. 20, 253–274 (1956).MathSciNetMATHGoogle Scholar
  8. 8.
    H. Z. Hdeib, “w-closedmappings,” Rev. Colombiana Mat. 16 (1–2), 65–78 (1982).MathSciNetGoogle Scholar
  9. 9.
    R. Telgarsky, “C-scattered and paracompact spaces,” Fund. Math. 73 (1), 59–74 (1971/72).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsJordan University of Science and TechnologyIrbidJordan

Personalised recommendations