Advertisement

Mathematical Notes

, Volume 103, Issue 1–2, pp 3–17 | Cite as

Almost Projective and Almost Injective Modules

  • A. N. Abyzov
Article

Abstract

The structure of rings over which every right module is almost injective is clarified. The regular and I-finite rings over which every right module is almost projective are described.

Keywords

semi-Artinian ring V -ring almost projective module almost injective module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Baba, “Note on almost M,” Osaka J. Math. 26 (3), 687–698 (1989).MathSciNetMATHGoogle Scholar
  2. 2.
    M. Harada and T. Mabuchi, “On almostM-projectives,” Osaka J. Math. 26 (4), 837–848 (1989).MathSciNetMATHGoogle Scholar
  3. 3.
    Y. Baba and M. Harada, “On almost M-projectives and almost M-injectives,” Tsukuba J. Math. 14 (1), 53–69 (1990).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Harada, “On almost relative injectives on Artinian modules,” Osaka J. Math. 27 (4), 963–971 (1990).MathSciNetMATHGoogle Scholar
  5. 5.
    M. Harada, “Direct sums of almost relative injective modules,” Osaka J. Math. 28 (3), 751–758 (1991).MathSciNetMATHGoogle Scholar
  6. 6.
    M. Harada, “Note on almost relative projectives and almost relative injectives,” Osaka J. Math. 29 (3), 435–446 (1992).MathSciNetMATHGoogle Scholar
  7. 7.
    M. Harada, “Almost projective modules,” J. Algebra 159 (1), 150–157 (1993).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Alahmadi and S. K. Jain, “A note on almost injective modules,” Math. J. Okayam 51, 101–109 (2009).MathSciNetMATHGoogle Scholar
  9. 9.
    A. Alahmadi, S. K. Jain, and S. Singh, “Characterizations of Almost Injective Modules,” in Noncommutative Rings and Their Applications, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2015), Vol. 634, pp. 11–17.Google Scholar
  10. 10.
    M. Arabi-Kakavand, Sh. Asgari, and Y. Tolooei, “Rings over which everymodule is almost injective,” Comm. Algebra 44 (7), 2908–2918 (2016).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    M. Arabi-Kakavand, Sh. Asgari and H. Khabazian, “Rings for which every simple module is almost injective,” Bull. Iranian Math. Soc. 42 (1), 113–127 (2016).MathSciNetMATHGoogle Scholar
  12. 12.
    S. Singh, “Almost relative injective modules,” Osaka J. Math. 53 (2), 425–438 (2016).MathSciNetMATHGoogle Scholar
  13. 13.
    F. Kasch, Moduln und Ringe (Teubner, Stuttgart, 1977; Mir, Moscow, 1981).MATHGoogle Scholar
  14. 14.
    A. A. Tuganbaev, Theory of Rings. ArithmeicModules and Rings (MTsNMO, Moscow, 2009) [inRussian].Google Scholar
  15. 15.
    R. Wisbauer, Foundations of Module and Ring Theory, in Algebra Logic Appl. (Gordon and Breach Sci. Publ., Philadelphia, PA, 1991), Vol. 3.Google Scholar
  16. 16.
    A. N. Abyzov, “Weakly regular modules over normal rings,” Sib. Mat. Zh. 49 (4), 721–738 (2008) [Sib. Math. J. 49 (4), 575–586 (2008)].MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, in Pitman Res. Notes Math. Ser. (Longman Sci. & Tech., Harlow, 1994), Vol. 313.Google Scholar
  18. 18.
    H. Q. Dinh and D. V. Huynh, “Some results on self-injective rings and S-CS rings,” Comm. Algebra 31 (12), 6063–6077 (2003).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    G. Baccella, “Semi-Artinian V -rings and semi-Artinian von Neumann regular rings,” J. Algebra 173 (3), 587–612 (1995).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. N. Abyzov, “Regular semi-Artinian rings,” Izv. Vyssh. Uchebn. Zaved., Mat. No. 1, 3–11 (2012) [Russ. Math. 56 (1), 1–8 (2012)].MathSciNetMATHGoogle Scholar
  21. 21.
    P. A. Krylov and A. A. Tuganbaev, “Modules over formal matrix rings,” Fundam. Prikl. Mat. 15 (8), 145–211 (2009) [J. Math. Sci. (New York), 171 (2), 248–295 (2010)].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations