Skip to main content
Log in

The Kraus inequality for multivalent functions

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For a holomorphic function f, f′(0) ≠ 0, in the unit disk U, we establish a geometric constraint on the image f(U) for which the classical Kraus inequality |S f (0)| ≤ 6 holds; earlier, it was known only in the case of the conformal mapping of f. Here S f (0) is the Schwarzian derivative of the function f calculated at the point z = 0. The proof is based on the strengthened version of Lavrent’ev’s theorem on the extremal decomposition of the Riemann sphere into two disjoint domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Nehari, Conformal Mapping (McGraw-Hill, New York, 1952).

    MATH  Google Scholar 

  2. O. Lehto, Univalent Functions and Teichmüller Spaces, in Grad. Texts in Math. (Springer, New York, 1987), Vol.109.

  3. B. Osgood, “Old and new on the Schwarzian derivative,” in Quasiconformal Mappings and Analysis (Springer, New York, 1998), pp. 275–308.

    Chapter  Google Scholar 

  4. M. Chuaqui, P. Duren, W. Ma, D. Mejí a, D. Minda, and B. Osgood, “Schwarzian norms and the two-point distortion,” Pacific J. Math. 254 (1), 101–116 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Kraus, “Öber den Zusammenhang einiger Characteristiken eines einfach zusammenhangenden Bereiches mit der Kreisabbildung,” Mitt. Math. Semin. Univ. Giessen 21, 1–28 (1932).

    MATH  Google Scholar 

  6. V. N. Dubinin, “Geometric estimates of the Schwarzian derivative,” UspekhiMat. Nauk 72 (3 (435)) 97–130 (2017).

    Article  Google Scholar 

  7. G. V. Kuz’mina, “Methods of geometric function theory. I,” Algebra Anal. 9 (3), 41–103 (1997) [St. Petersburg Math. J. 9 (3), 455–507 (1998)]; “Methods of geometric function theory. II,” Algebra Anal. 9 (5), 1–50 (1997) [St. Petersburg Math. J. 9 (5), 889–930 (1998)].

    MATH  Google Scholar 

  8. A. K. Bakhtin, G. P. Bakhtina, and Yu. B. Zelinskii, Topological-Algebraic Structures and Geometric Methods in Complex Analysis, in Proceedings of Institute of Mathematics of NAS of Ukraine. Mathematics and Its Applications (Inst. Mat. NAN Ukrainy, Kiev, 2008), Vol. 73 [in Russian].

  9. V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory (Birkhäuser, Basel, 2014).

    Book  MATH  Google Scholar 

  10. A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, supplemented by R. Courant’s Geometrische Funktionentheorie (Springer-Verlag, Berlin–Göttingen–Heidelberg–New York, 1964; Nauka, Moscow, 1968).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Dubinin.

Additional information

Original Russian Text © V. N. Dubinin, 2017, published in Matematicheskie Zametki, 2017, Vol. 102, No. 4, pp. 559–564.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, V.N. The Kraus inequality for multivalent functions. Math Notes 102, 516–520 (2017). https://doi.org/10.1134/S0001434617090231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617090231

Keywords

Navigation