Skip to main content
Log in

Embedding of a uniquely divisible Abelian semigroup in a convex cone

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

It is proved that every uniquely divisible Abelian semigroup admits an injective subadditive embedding in a convex cone. As an application, the classical theory of generators of one-parameter operator semigroups is generalized to the case in which the parameter ranges over a uniquely divisible semigroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Birkhoff, “Integration of functions with values in a Banach space,” Trans. Amer. Math. Soc. 38 (2), 357–378 (1935).

    MATH  MathSciNet  Google Scholar 

  2. J. H. Rådström, “An embedding theorem for space of convex sets,” Proc. Amer. Math. Soc. 3, 165–169 (1952).

    Article  MathSciNet  Google Scholar 

  3. G. Godini, “A framework for best simultaneous approximation, normed almost linear spaces,” J. Approx. Theory 43 (4), 338–358 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  4. R. E. Worth, “Boundaries of semilinear spaces and semialgebras,” Trans. Amer. Math. Soc. 148, 99–119 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Urbański, “A generalization of the Minkovski–Rädström–Hörmander theorem,” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (9), 709–715 (1976).

    MathSciNet  Google Scholar 

  6. K. Keimel and W. Roth, Ordered Cones and Approximation, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1992), Vol. 1517.

  7. B. Fuchssteiner and W. Lusky, Convex Cones, in North Holland Math. Stud. (North Holland, Amsterdam, 1981), Vol.56.

  8. T. Abreu, E. Corbacho, and V. Tarieladze, “Uniform type conoids,” Math. Pannon. 19 (2), 155–170 (2008).

    MATH  MathSciNet  Google Scholar 

  9. E. Corbacho Rosas, D. Dikranjan, and V. Tarieladze, “Absorption adjunctable semigroups,” in Nuclear Groups and Lie Groups, Res. Exp. Math. (Heldermann Verlag, Lemgo, 2001), Vol. 24, pp. 77–103.

    MATH  MathSciNet  Google Scholar 

  10. I. V. Orlov, “Introduction to sublinear analysis,” in: Sovrem. Mat., Fundam. Napravl., Vol. 53: Proceedings of the Crimean Autumn Mathematical Workshop–Symposium (RUDN, Moscow, 2014), pp. 64–132 [J. Math. Sci., New York 218 (4), 430–502 (2016)].

    Google Scholar 

  11. I. V. Orlov, “Inverse and implicit function theorems in the class of subsmooth maps,” Mat. Zametki 99 (4), 631–634 (2016) [Math. Notes 99 (4), 619–622 (2016)].

    Article  MathSciNet  Google Scholar 

  12. F. S. Stonyakin, “An analogue of the Hahn–Banach theorem for functionals on abstract convex cones,” Eurasian Math. J. 7 (3), 89–99 (2016).

    MathSciNet  Google Scholar 

  13. M. L. Gol’dman and P. P. Zabreiko, “Optimal Banach function space for the cone of nonnegative decreasing functions,” Tr. In-ta Matem. 22 (1), 24–34 (2014).

    Google Scholar 

  14. V. D. Stepanov, “On optimal Banach spaces containing a weight cone of monotone or quasiconcave functions,” Mat. Zametki 98 (6), 907–922 (2015) [Math. Notes 98 (6), 957–970 (2015)].

    Article  MATH  MathSciNet  Google Scholar 

  15. E. G. Bakhtigareeva and M. L. Gol’dman, “Associate norms and optimal embeddings for a class of two-weight integral quasi-norms,” Fundam. Prikl. Mat. 19 (5), 3–33 (2014) [J. Math. Sci., New York 218 (5), 549–571 (2016)].

    MathSciNet  Google Scholar 

  16. E. Bakhtigareeva, “Optimal Banach function space for a given cone of decreasing functions in a weighted L p-space,” Eurasian Math. J. 6 (1), 6–25 (2015).

    MathSciNet  Google Scholar 

  17. A. Löhne, On Convex Functions with Values in Semi-Linear Spaces, http://ito.mathematik.unihalle. de. (2004).

    Google Scholar 

  18. A. Hamel and A. Löhne, Minimal Set Theorems, http://ito.mathematik.uni-halle.de/~loehne/pdf/mst_web.pdf.

  19. H. Cartan and S. Eilenberg, Homological Algebra (Princeton Univ. Press, Princeton, NJ, 1999).

    MATH  Google Scholar 

  20. S. Feigelstock, “Divisible is injective,” Soochow J. Math. 32 (2), 241–243 (2006).

    MATH  MathSciNet  Google Scholar 

  21. C. Casacuberta, J. L. Rodríguez and L. J. Hernándes Paricio, “Models for torsion homotopy types,” Israel J. Math. 107, 301–318 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  22. B. V. Gnedenko, A Course in the Theory of Probability (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  23. S. M. Ross, Introduction to Probability Models (Academic Press, Boston, MA, 1993).

    MATH  Google Scholar 

  24. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups (AMS, Providence, RI, 1957; Inostr. Lit., Moscow, 1962).

    MATH  Google Scholar 

  25. R. V. Shamin, Semigroups of Operators (RUDN, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Orlov.

Additional information

Original Russian Text © I. V. Orlov, 2017, published in Matematicheskie Zametki, 2017, Vol. 102, No. 3, pp. 396–404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, I.V. Embedding of a uniquely divisible Abelian semigroup in a convex cone. Math Notes 102, 361–368 (2017). https://doi.org/10.1134/S0001434617090061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617090061

Keywords

Navigation