Skip to main content
Log in

Gehring–Martin–Tan numbers and Tan numbers of elementary subgroups of PSL(2,ℂ)

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The Gehring–Martin–Tan number and the Tan number are real quantities defined for two-generated subgroups of the group PSL(2,ℂ). It follows from the necessary discreteness conditions proved by Gehring and Martin and, independently, by Tan that, for discrete groups, these quantities are bounded below by 1. In the paper, we find precise values of these numbers for the majority of elementary discrete groups and prove that, for every real r ≥ 1, there are infinitely many elementary discrete groups with the Gehring–Martin–Tan number equal to r and the Tan number equal to r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Jørgensen, “A note on subgroups of SL(2, C),” Quart. J. Math. Oxford Ser. (2) 28 (110), 209–211 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. F. Beardon, The Geometry of Discrete Groups (Academic Press, London, 1977; Nauka, Moscow, 1986).

    Google Scholar 

  3. T. Jørgensen, “On discrete groups of Möbius transformations,” Amer. J. Math. 98 (3), 739–749 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Yu. Vesnin and A. V. Maslei, Two-Generated Subgroups of PSL(2, C) Extremal for the Jørgensen Inequality and Its Analogs, in Proceedings of the Seminar on Vector and Tensor Analysis and Its Applications to Geometry, Mechanics, and Physics (Izd. Moskov. Univ., Moscow, 2014), Vol. 30 [in Russian].

    Google Scholar 

  5. T. Jørgensen and M. Kiikka, “Some extreme discrete groups,” Ann. Acad. Sci. Fenn. Ser. A I, Math. 1 (2), 245–248 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Jørgensen, A. Lascurain, and T. Pignataro, “Translation extensions of the classical modular group,” Complex Variables Theory Appl. 19 (4), 205–209 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Sato and R. Yamada, “Some extreme Kleinian groups for Jorgensen’s inequality,” Rep. Fac. Sci. Shizuoka Univ. 27, 1–8 (1993).

    MATH  MathSciNet  Google Scholar 

  8. H. Sato, “One-parameter families of extreme discrete groups for Jørgensen’s inequality,” in In the Tradition of Ahlfors and Bers, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2000), Vol. 256, pp. 271–287.

    Chapter  Google Scholar 

  9. B. Maskit, “Some special 2-generator Kleinian groups,” Proc. Amer. Math. Soc. 106 (1), 175–186 (1989).

    MATH  MathSciNet  Google Scholar 

  10. R. González-Acuna and A. Ramírez, “Jørgensen subgroups of the Picard group,” Osaka J. Math. 44 (2), 471–482 (2007).

    MATH  MathSciNet  Google Scholar 

  11. J. Callahan, “Jørgensen number and arithmeticity,” Conform. Geom. Dyn. 13, 160–186 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  12. F. W. Gehring and G. J. Martin, “Stability and extremality in Jørgensen’s inequality,” Complex Variables Theory Appl. 12 (1-4), 277–282 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Li, M. Oichi, and H. Sato, “Jørgensen groups of parabolic type I (finite case),” Comput. Methods Funct. Theory. 5 (2), 409–430 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Li, M. Oichi, and H. Sato, “Jørgensen groups of parabolic type II (countably infinite case),” Osaka J. Math. 41 (3), 491–506 (2004).

    MATH  MathSciNet  Google Scholar 

  15. C. Li, M. Oichi, and H. Sato, “Jørgensen groups of parabolic type III (uncountably infinite case),” Kodai Math. J. 28 (2), 248–264 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Sato, “The Jørgensen number of the Whitehead link group,” Bol. Soc. Mat. Mexicana (3) 10, 495–502 (2004).

    MATH  MathSciNet  Google Scholar 

  17. M. Oichi and H. Sato, “Jørgensen numbers of discrete groups,” Complex Analysis and Geometry of Hyperbolic Spaces 1518, 105–118 (2006).

    Google Scholar 

  18. A. Yu. Vesnin and A. V. Masley [A. V. Maslei], “On Jørgensen numbers and their analogs for groups of figure-eight orbifolds,” Sibirsk. Mat. Zh. 55 (5), 989–1000 (2014) [Sib. Math. J. 55 (5),), 807–816 (2014].

    MATH  MathSciNet  Google Scholar 

  19. F. W. Gehring and G. J. Martin, “Iteration theory and inequalities for Kleinian groups,” Bull. Amer. Math. Soc. (N. S.) 21 (1), 57–63 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Tan, “On two-generator discrete groups of Möbius transformations,” Proc. Amer. Math. Soc. 106 (3), 763–770 (1989).

    MATH  MathSciNet  Google Scholar 

  21. J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, in Grad. Texts in Math. (Springer-Verlag, New York, 2006), Vol. 149.

    Google Scholar 

  22. D. Repovš and A. Vesnin, “On Gehring–Martin–Tan groups with an elliptic generator,” Bull. Aust. Math. Soc. 94 (2), 326–336 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  23. N. A. Isachenko, “Systems of generators of subgroups of PSL(2, C),” Sibirsk. Mat. Zh. 31 (1), 191–193 (1990) [Sib. Math. J. 31 (1), 162–165 (1990)].

    MATH  MathSciNet  Google Scholar 

  24. A. V. Maslei, “On parameters and discreteness of Maskit subgroups in PSL(2, C),” Sib. Elektron. Matem. Izv. 14, 125–134 (2017).

    MATH  MathSciNet  Google Scholar 

  25. É. B. Vinberg, A Course in Algebra (Faktorial Press, Moscow, 2001; American Mathematical Society, Providence, RI, 2003).

    Google Scholar 

  26. F. W. Gehring and G. J. Martin, “Commutators, collars and the geometry of Möbius groups,” J. Anal. Math. 63 (1), 175–219 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  27. H. S. M. Coxeter, Regular Polytopes (Methuen, London, 1948).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maslei.

Additional information

Original Russian Text © A. V. Maslei, 2017, published in Matematicheskie Zametki, 2017, Vol. 102, No. 2, pp. 255–269.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslei, A.V. Gehring–Martin–Tan numbers and Tan numbers of elementary subgroups of PSL(2,ℂ). Math Notes 102, 219–231 (2017). https://doi.org/10.1134/S0001434617070240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617070240

Navigation