Skip to main content
Log in

Trace of order (−1) for a string with singular weight

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The Sturm–Liouville problem on a finite closed interval with potential and weight of first order of singularity is studied. Estimates for the s-numbers and eigenvalues of the corresponding integral operator are obtained. The spectral trace of first negative order is evaluated in terms of the integral kernel. The obtained theoretical results are illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Krein, “On a generalization of investigations of Stieltjes,” Dokl. Akad. Nauk SSSR 87 (6), 881–884 (1952).

    MATH  MathSciNet  Google Scholar 

  2. M. G. Krein and I. S. Kats, “On the spectral functions of the string,” Amer. Math. Soc. Transl. 103 (2), 19–102 (1974).

    MATH  Google Scholar 

  3. W. Feller, “Generalized second-order differential operators and their lateral conditions,” Illinois J. Math. 1, 459–504 (1957).

    MATH  MathSciNet  Google Scholar 

  4. Y. Kasahara, “Spectral theory of generalized second-order differential operators and its applications to Markov processes,” Japan J. Math. (N. S.) 1 (1), 67–84 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Dym and H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, in Probab. and Math. Stat. (Academic Press, New York, 1976), Vol. 31.

    Google Scholar 

  6. I. S. Kats, “The spectral theory of a string,” Ukrainian Math. J. 46 (3), 159–182 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Kotani and S. Watanabe, “Krein’s spectral theory of strings and generalized diffusion processes,” in Functional Analysis in Markov Processes, Lecture Notes in Math. (Springer-Verlag, Berlin, 1982), Vol. 923, pp. 235–259.

    Chapter  Google Scholar 

  8. A. Fleige, Spectral Theory of Indefinite Krein–Feller Differential Operators, in Math. Res. (Akademie Verlag, Berlin, 1996), Vol. 98.

    Google Scholar 

  9. A. Zettl, Sturm–Liouville Theory, in Math. Surveys Monogr. (Amer. Math. Soc., Providence, RI, 2005), Vol. 121.

    Google Scholar 

  10. J. Eckhardt and A. Kostenko, “The inverse spectral problem for indefinite strings,” Invent. Math. 204 (3), 939–977 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Constantin, V. S. Gerdjikov, and R. I. Ivanov, “Inverse scattering transform for the Camassa–Holm equation,” Inverse Problems 22 (6), 2197–2207 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Bennewitz, B. M. Brown, and R. Weikard, “Scattering and inverse scattering for a left-definite Sturm–Liouville problem,” J. Differential Equations 253 (8), 2380–2419 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Eckhardt and A. Kostenko, “An isospectral problem for global conservative multi-peakon solutions of the Camassa–Holm equation,” Comm. Math. Phys. 329 (3), 893–918 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. M. Savchuk and A. A. Shkalikov, “Sturm-Liouville operators with singular potentials,” Mat. Zametki 66 (6), 897–912 (1999) [Math. Notes 66 (5–6), 741–753 (2000)].

    Article  MATH  MathSciNet  Google Scholar 

  15. A. M. Savchuk and A. A. Shkalikov, “Sturm-Liouville operators with distribution potentials”, with the potentials distributions,” Trudy Moskov. Mat. Obshch. 64, 159–212 (2003) [Trans. Moscow Math. Soc. 64, 143–192 (2003)].

    MATH  MathSciNet  Google Scholar 

  16. A. A. Vladimirov and I. A. Sheipak, “Self-similar functions in the space L2[0, 1] and the Sturm-Liouville problem with a singular indefinite weight,” Mat. Sb. 197 (11), 13–30 (2006) [Sb. Math. 197 (11–12), 1569–1586 (2006)].

    Article  MATH  MathSciNet  Google Scholar 

  17. A. A. Vladimirov and I. A. Sheipak, “The indefinite Sturm-Liouville problem for some classes of self-similar singular weights,” in Trudy Mat. Inst. Steklov Vol. 255: Function Spaces, Approximation Theory, Nonlinear Analysis (Nauka, Moscow, 2006), pp. 88–98 [Proc. Steklov Inst. Math. 255 (4), 82–91 (2006)].

    Google Scholar 

  18. I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces L p[0, 1],” Mat. Zametki 81 (6), 924–938 (2007) [Math. Notes 81 (5–6), 827–839 (2007)].

    Article  MATH  MathSciNet  Google Scholar 

  19. A. A. Vladimirov and I. A. Sheipak, “Asymptotics of the eigenvalues of the Sturm-Liouville problem with discrete self-similar weight,” Mat. Zametki 88 (5), 662–672 (2010) [Math. Notes 88 (5–6), 637–646 (2010)].

    Article  MATH  MathSciNet  Google Scholar 

  20. A. A. Vladimirov and I. A. Sheipak, “On the Neumann problem for the Sturm-Liouville equation with Cantor-type self-similar weight,” Funktsional. Anal. Prilozhen. 47 (4), 18–29 (2013) [Functional Anal. Appl. 47 (4), 261–270 (2013)].

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Solomyak and E. Verbitsky, “On a spectral problem related to self-similarmeasures,” Bull. London Math. Soc. 27 (3), 242–248 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. I. Nazarov, “Logarithmic asymptotics of small deviations for some Gaussian processes in the L 2-normwith respect to a self-similarmeasure,” in Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) (POMI, St. Petersburg., 2004), Vol. 311, pp. 190–213 [J. Math. Sc. (New York) 133 (3), 1314–1327 (2006)].

    Google Scholar 

  23. A. A. Vladimirov, “Some remarks on the integral characteristics of the Wiener process,” Dal’nevost. Mat. Zh. 15 (2), 156–165 (2015).

    MATH  MathSciNet  Google Scholar 

  24. V. A. Sadovnichii and V. E. Podol’skii, “Traces of operators,” Uspekhi Mat. Nauk 61 (5 (371)), 89–156 (2006) [Russian Math. Surveys 61 (5), 885–953 (2006)].

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Heidelberg, 1966; Mir, Moscow, 1972).

    Book  MATH  Google Scholar 

  26. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Non–Self-Adjoint Operators in Hilbert Space (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  27. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  28. Ph. Hartman, Ordinary Differential Equations (John Wiley, New York–London–Sydney, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  29. A. A. Vladimirov, “On the oscillation theory of the Sturm-Liouville problem with singular coefficients,” Zh. Vychisl. Mat. Mat. Fiz. 49 (9), 1609–1621 (2009) [Comput. Math. Math. Phys. 49 (9), 1535–1546 (2009)].

    MATH  MathSciNet  Google Scholar 

  30. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Birkhäuser, Berlin, 1977; Mir, Moscow, 1980).

    MATH  Google Scholar 

  31. R. Oloff, “Interpolation zwischen den Klassen Sp von Operatoren in Hilberträumen,” Math. Nachr. 46, 209–218 (1970).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ivanov.

Additional information

Original Russian Text © A. S. Ivanov, A. M. Savchuk, 2017, published in Matematicheskie Zametki, 2017, Vol. 102, No. 2, pp. 197–215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.S., Savchuk, A.M. Trace of order (−1) for a string with singular weight. Math Notes 102, 164–180 (2017). https://doi.org/10.1134/S0001434617070197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617070197

Navigation