Mathematical Notes

, Volume 101, Issue 5–6, pp 1033–1039 | Cite as

On the Hamiltonian property of linear dynamical systems in Hilbert space

  • D. V. TreshchevEmail author
  • A. A. Shkalikov
Volume 101, Number 6, June, 2017


Conditions for the operator differential equation \(\dot x = Ax\) possessing a quadratic first integral (1/2)(Bx, x) to be Hamiltonian are obtained. In the finite-dimensional case, it suffices to require that ker B ⊂ ker A*. For a bounded linear mapping x → Ωx possessing a first integral, sufficient conditions for the preservation of the (possibly degenerate) Poisson bracket are obtained.


Hamiltonian system Poisson bracket symplectic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Heidelberg, 1966; Mir, Moscow, 1972).CrossRefzbMATHGoogle Scholar
  2. 2.
    V. V. Kozlov, “Linear systems with a quadratic integral,” Prikl. Mat. Mekh. 56 (6), 900–906 (1992) [J. Appl. Math. Mech. 56 (6), 803–809 (1992)].MathSciNetGoogle Scholar
  3. 3.
    F. Riesz and B. Szökefalvi Nagy, Leçons d’analyse fonctionelle (Académiai Kiadó, Budapest, 1977; Mir, Moscow, 1979).Google Scholar
  4. 4.
    V. V. Kozlov, “Spectral properties of operators with polynomial invariants in real finite-dimensional spaces,” in Trudy Mat. Inst. Steklov, Vol. 268: Differential Equations and Topology. I (MAIK, Moscow, 2010), pp. 155–167 [Proc. Steklov Inst. Math. 268, 148–160 (2010)].Google Scholar
  5. 5.
    J. Bognar, Indefinite Inner Product Spaces, in Ergeb. Math. Grenzgeb. (Springer-Verlag, New York, 1974), Vol. 78.Google Scholar
  6. 6.
    T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric (Nauka, Moscow, 1986) [in Russian].zbMATHGoogle Scholar
  7. 7.
    V. I. Derguzov, “On the stability of the solutions of the Hamilton equations with unbounded periodic operator equations,” Mat. Sb. 63 (105) (4), 591–619 (1964).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations