Skip to main content
Log in

An analog of Pólya’s theorem for multivalued analytic functions with finitely many branch points

  • Volume 101, Number 5, May, 2017
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

An analog of Pólya’s theorem on the estimate of the transfinite diameter for a class of multivalued analytic functions with finitely many branch points and of the corresponding class of admissible compact sets located on the associated (with this function) two-sheeted Stahl–Riemann surface is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Stahl, Sets of Minimal Capacity and Extremal Domains, arXiv: 1205.3811.

  2. S. P. Suetin, “Zero distribution ofHermite–Padépolynomials and localization of branch points ofmultivalued analytic functions,” English version: Uspekhi Mat. Nauk 71 (5 (431)), 183–184 (2016) [Russian Math. Surveys 71 (5), 976–978 (2016)].

    Google Scholar 

  3. G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III,” Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 1929, 55–62 (1929).

    MATH  Google Scholar 

  4. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  5. V. I. Buslaev, “An analogue of Pólya’s theorem for piecewise holomorphic functions,” Mat. Sb. 206 (12), 55–69 (2015) [Sb. Math. 206 (12), 1707–1721 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  6. A. I. Aptekarev, “Asymptotics of Hermite–Padéapproximants for a pair of functions with branch points,” for the pair of functions with the branch points,” Dokl. Akad. Nauk 422 (4), 443–445 (2008) [Dokl. Math. 78 (2), 717–719 (2008)].

    Google Scholar 

  7. V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field,” in Trudy Mat. Inst. Steklov, Vol. 290: Modern Problems of Mathematics, Mechanics, and Mathematical Physics (MAIK, Moscow, 2015), pp. 254–271 [Proc. Steklov Inst. Math. 290 (1), 238–255 (2015)].

    Google Scholar 

  8. V. I. Buslaev, “An analog of Gonchar’s theorem for the m-point version of Leighton’s conjecture,” in Trudy Mat. Inst. Steklov, Vol. 293: Function Spaces, Approximation Theory, Related Areas of Mathematical Analysis (MAIK, Moscow, 2016), pp. 133–145 [Proc. Steklov Inst. Math. 293 (3), 127–139 (2016)].

    Google Scholar 

  9. H. Stahl, “The convergence of Padéapproximants to functions with branch points,” J. Approx. Theory 91 (2), 139–204 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. A. Rakhmanov, “Orthogonal polynomials and S-curves,” in Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2012), Vol. 578, pp. 195–239.

    Chapter  Google Scholar 

  11. S. P. Suetin, “Distribution of the zeros of Padépolynomials and analytic continuation,” Uspekhi Mat. Nauk 70 (5 (425)), 121–174 (2015) [RussianMath. Surveys 70 (5), 901–951 (2015)].

    Article  MathSciNet  Google Scholar 

  12. A. I. Aptekarev and M. L. Yattselev, “Padéapproximants for functions with branch points is strong asymptotics of Nuttall–Stahl polynomials,” Acta Math. 215 (2), 217–280 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Nuttall, “Asymptotics of generalized Jacobi polynomials,” Constr. Approx. 2 (1), 59–77 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin, “Heine, Hilbert, Padé, Riemann and Stieltjes: John Nuttall’s work 25 years later,” in Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2012), Vol. 578, pp. 165–193.

    Google Scholar 

  15. M. A. Lapik, “Families of vector measures which are equilibriummeasures in an external field,” Mat. Sb. 206 (2), 41–56 (2015) [Sb. Math. 206 (2), 211–224 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  16. V. I. Buslaev and S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padépolynomials,” in Trudy Mat. Inst. Steklov, Vol. 290: Modern Problems of Mathematics, Mechanics, and Mathematical Physics (MAIK, Moscow, 2015), pp. 272–279 [Proc. Steklov Inst. Math. 290 (1), 256–263 (2015)].

    Google Scholar 

  17. A. V. Komlov, N. G. Kruzhilin, R. V. Pal’velev, and S. P. Suetin, “Convergence of Shafer quadratic approximants,” UspekhiMat. Nauk 71 (2 (428)), 205–206 (2016) [RussianMath. Surveys 71 (2), 373–375 (2016)].

    Article  MATH  Google Scholar 

  18. N. R. Ikonomov, R. K. Kovacheva, and S. P. Suetin, Some Numerical Results on the Behavior of Zeros of the Hermite–PadéPolynomials, arXiv: 1501.07090, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Suetin.

Additional information

Original Russian Text © S. P. Suetin, 2017, published in Matematicheskie Zametki, 2017, Vol. 101, No. 5, pp. 779–791.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suetin, S.P. An analog of Pólya’s theorem for multivalued analytic functions with finitely many branch points. Math Notes 101, 888–898 (2017). https://doi.org/10.1134/S0001434617050145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617050145

Keywords

Navigation