Skip to main content
Log in

On local properties of spatial generalized quasi-isometries

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

An upper bound for the measure of the image of a ball under mappings of a certain class generalizing the class of branched spatial quasi-isometries is determined. As a corollary, an analog of Schwarz’ classical lemma for these mappings is proved under an additional constraint of integral character. The obtained results have applications to the classes of Sobolev and Orlicz–Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Vôisôlô, Lectures on n-Dimensional QuasiconformalMappings, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1971), Vol.229.

    Google Scholar 

  2. R. R. Salimov and E. A. Sevost’yanov, “The Poletskii and Vôisôlôinequalities for the mappings with (p, q)-distortion,” Complex Var. Elliptic Equ. 59 (2), 217–231 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost’yanov, “Toward the theory of Orlicz–Sobolev classes,” Algebra Anal. 25 (6), 50–102 (2013) [St. Petersbg. Math. J. 25 (6), 929–963 (2014)].

    MATH  Google Scholar 

  4. F. Gehring, “Lipschitz mappings and p-capacity of rings in n-space,” in Annals ofMathematical Studies, Vol. 66: Advances in the Theory of Riemann Surfaces (Proceedings of the 1969 Stony Brook Conference) (Princeton Univ. Press, Princeton, NJ, 1971), pp. 175–193.

    Google Scholar 

  5. K. Ikoma, “On the distortion and correspondence under quasiconformal mappings in space,” Nagoya Math. J. 25, 175–203 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Martio, S. Rickman, and J. Vôisôlô, “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A I 448, 1–40 (1969).

    MathSciNet  MATH  Google Scholar 

  7. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives, and Quasiconformal Mappings (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  8. V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean,” Mat. Sb. 130 (172) (2 (6)), 185–206 (1986) [Math. USSR-Sb. 58 (1), 185–205 (1987)].

    MathSciNet  MATH  Google Scholar 

  9. V. G. Maz’ya, Sobolev Spaces (Izd. Leningrad. Univ., Leningrad, 1985) [in Russian].

    MATH  Google Scholar 

  10. S. Rickman, Quasiregular Mappings, in Ergeb. Math. Grenzgeb. (3) (Springer-Verlag, Berlin, 1993), Vol.26.

  11. R. R. Salimov and E. A. Sevost’yanov, “Analogs of the Ikoma–Schwartz lemma and Liouville theorem for mappings with unbounded characteristic,” Ukrain.Mat. Zh. 63 (10), 1368–1380 (2011) [UkrainianMath. J. 63 (10), 1551–1565 (2012)].

    MathSciNet  MATH  Google Scholar 

  12. O. Martio, S. Rickman, and J. Vôisôlô, “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A I 465, 1–13 (1970).

    MathSciNet  Google Scholar 

  13. R. R. Salimov, “Estimation of the measure of the image of the ball,” Sibirsk. Mat. Zh. 53 (4), 920–930 (2012) [SiberianMath. J. 53 (4), 739–747 (2012)].

    MathSciNet  MATH  Google Scholar 

  14. M. A. Lavrent’ev, VariationalMethods for Boundary-Value Problems for Systems of Elliptic Equations (Izd. Akad. Nauk SSSR, Moscow, 1962; Noordhoff, Groningen, 1963).

    Google Scholar 

  15. S. Saks, Theory of the Integral (Courier Corporation, New York–Chicago, 1947; Inostrannaya Literatura, Moscow, 1949).

    Google Scholar 

  16. K. Kuratowski, Topology (Academic, New York–London; PWN, Warsaw, 1968;Mir, Moscow, 1969), Vol.2.

  17. R. Miniowitz, “Normal families of quasimeromorphic mappings,” Proc. Amer. Math. Soc. 84 (1), 35–43 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Golberg, R. Salimov, and E. Sevost’yanov, “Normal families of discrete open mappings with controlled p-module,” in Contemp. Math., Vol. 667: Complex Analysis and Dynamical Systems VI (Israel Mathematical Conference Proceedings) (Amer.Math. Soc., Providence, RI, 2016), Part 2, pp. 83–103.

    Google Scholar 

  19. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory (Springer, New York, 2009).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Salimov.

Additional information

Original Russian Text © R. R. Salimov, E. A. Sevost’yanov, 2017, published in Matematicheskie Zametki, 2017, Vol. 101, No. 4, pp. 594–610.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimov, R.R., Sevost’yanov, E.A. On local properties of spatial generalized quasi-isometries. Math Notes 101, 704–717 (2017). https://doi.org/10.1134/S0001434617030294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617030294

Keywords

Navigation