Mathematical Notes

, Volume 101, Issue 1–2, pp 265–276

# On simplices in diameter graphs in ℝ4

Volume 101, Number 2, February, 2017

## Abstract

Agraph G is a diameter graph in ℝ d if its vertex set is a finite subset in ℝ d of diameter 1 and edges join pairs of vertices a unit distance apart. It is shown that if a diameter graph G in ℝ4 contains the complete subgraph K on five vertices, then any triangle in G shares a vertex with K. The geometric interpretation of this statement is as follows. Given any regular unit simplex on five vertices and any regular unit triangle in ℝ4, then either the simplex and the triangle have a common vertex or the diameter of the union of their vertex sets is strictly greater than 1.

## Keywords

diameter graphs Schur’s conjecture

## References

1. 1.
K. Borsuk, “Drei Sätze über die n-dimensionale euklidische Sphäre,” Fund. Math. 20, 177–190 (1933).
2. 2.
P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry (Springer, New York, 2005).
3. 3.
A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56 (1 (337)), 107–146 (2001) [RussianMath. Surveys 56 (1), 103–139 (2001)].
4. 4.
A. M. Raigorodskii, “Around Borsuk’s hypothesis,” in Contemporary Mathematics. Fundamental Directions, Vol. 23: Geometry and Mechanics (Ros. Univ. Druzhby Narodov, Moscow, 2007), pp. 147–164 [J. Math. Sci. (New York) 154 (4), 604–623 (2008)].Google Scholar
5. 5.
A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in Discrete Geometry and Algebraic Combinatorics, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2014), Vol. 625, pp. 93–109.Google Scholar
6. 6.
A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” in Thirty Essays on Geometric Graph Theory (Springer, New York, 2013), pp. 429–460.
7. 7.
J. Kahn and G. Kalai, “A counterexample to Borsuk’s conjecture,” Bull. Amer. Math. Soc. (N. S.) 29 (1), 60–62 (1993).
8. 8.
T. Jenrich and A. E. Brouwer, “A 64-dimensional counterexample to Borsuk’s conjecture,” Electron. J. Combin. 21 (Paper 4. 29) (2014).
9. 9.
A. V. Bondarenko, “On Borsuk’s conjecture for two-distance sets,” Discrete Comput. Geom. 51 (3), 509–515 (2014).
10. 10.
H. Hopf and E. Pannwitz, “Aufgabe Nr. 167,” Jahr. Deutsch. Math.-Verein 43, 114 (1934).
11. 11.
B. Grünbaum, “A proof of Vászonyi’s conjecture,” Bull. Res. Council Israel. Sec. A 6, 77–78 (1956).Google Scholar
12. 12.
A. Heppes, “Beweis einer Vermutung von A. Vázsonyi,” ActaMath. Acad. Sci. Hungar. 7, 463–466 (1957).
13. 13.
S. Straszewicz, “Sur un problème géométrique de P. Erdős,” Bull. Acad. Polon. Sci. Cl. III 5, 39–40 (1957).
14. 14.
P. Erdős, “On sets of distances of n points in Euclidean space,” Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 165–169 (1960).
15. 15.
K. J. Swanepoel, “Unit distances and diameters in Euclidean spaces,” Discrete Comput. Geom. 41 (1), 1–27 (2009).
16. 16.
Z. Schur, M. A. Perles, H. Martini, and Y. S. Kupitz, “On the number of maximal regular simplices determined by n points in Rd,” in Discrete and Computational Geometry, Algorithms Combin. (Springer-Verlag, Berlin, 2003), Vol. 25, pp. 767–787.
17. 17.
F. Morić and J. Pach, “Remarks on Schur’s conjecture,” in Computational Geometry and Graphs, Lecture Notes in Comput. Sci. (Springer-Verlag, Berlin, 2013), Vol. 8296, pp. 120–131.Google Scholar
18. 18.
A. Kupavskii, “Diameter graphs in R4,” Discrete Comput. Geom. 51 (4), 842–858 (2014).
19. 19.
V. V. Bulankina, A. B. Kupavskii, and A. A. Polyanskii, “A remark on Schur’s conjecture in R4,” Dokl. Ross. Akad. Nauk 454 (5), 507–511 (2014) [Dokl. Math. 89 (1), 88–91 (2014)].
20. 20.
A. Kupavskii and A. Polyanskii, “Proof of Schur’s conjecture in Rd,” Combinatorica (in press); https://arxiv.org/abs/1402.3694.Google Scholar
21. 21.
I. Bárány, “The densest (n + 2)-set in Rn,” in Intuitive Geometry, Coll. Math. Soc. János Bolyai (North-Holland, Amsterdam, 1994), Vol. 63, pp. 7–10.Google Scholar