Skip to main content
Log in

Non-Lie top tunneling and quantum bilocalization in planar Penning trap

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We describe how a top-like quantum Hamiltonian over a non-Lie algebra appears in the model of the planar Penning trap under the breaking of its axial symmetry (inclination of the magnetic field) and tuning parameters (electric voltage, magnetic field strength and inclination angle) at double resonance. For eigenvalues of the quantum non-Lie top, under a specific variation of the voltage on the trap electrode, there exists an avoided crossing effect and a corresponding effect of bilocalization of quantum states on pairs of closed trajectories belonging to common energy levels. This quantum tunneling happens on the symplectic leaves of the symmetry algebra, and hence it generates a tunneling of quantum states of the electron between the 3D-tori in the whole 6D-phase space. We present a geometric formula for the leading term of asymptotics of the tunnel energy-splitting in terms of symplectic area of membranes bounded by invariantly defined instantons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kretzschmar, “Single particle motion in a Penning trap: Description in the classical canonical formalism,” Phys. Scripta 46, 544–554 (1992).

    Article  Google Scholar 

  2. F. G. Major, V. Gheorghe, and G. Werth, Charged Particle Traps (Springer, 2002).

    Google Scholar 

  3. Trapped Charged Particles and Fundamental Interactions, Ed. by K. Blaum and F. Herfurth (Springer-Verlag, 2008).

  4. S. Stahl, F. Galve, J. Alonso, S. Djekic, W. Quint, T. Valenzuela, J. Verdu, M. Vogel, and G. Werth, “A planar Penning trap,” Eur. Phys. J. D 32, 139–146 (2005).

    Article  Google Scholar 

  5. F. Galve and G. Werth, “Motional frequencies in a planar Penning trap,” Hyperfine Interact. 174, 41–46 (2007).

    Article  Google Scholar 

  6. J. Goldman and G. Gabrielse, “Optimized planar Penning traps for quantum information studies,” Hyperfine Interact. 199, 279–289 (2011).

    Article  Google Scholar 

  7. M. V. Karasev and E. M. Novikova, “Secondary resonances in Penning traps. Non-Lie symmetry algebras and quantum states,” Russian J. Math. Phys. 20 (3), 283–294 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. V. Karasev and E. M. Novikova, “Inserted perturbations generating asymptotical integrability,” Math. Notes 96 (5–6), 965–970 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. V. Karasev and E. M. Novikova, “Planar Penning trap with combined resonance and top dynamics on quadratic algebra,” Russian J. Math. Phys. 22, 463–468 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. V. Karasev and E. M. Novikova, “Stable two-dimensional tori in Penning trap under a combined frequency resonance,” Nanostructures. Math. Phys. and Modelling 13 (2), 55–92 (2015).

    Google Scholar 

  11. M. V. Karasev, “Quantization due to breaking the commutativity of symmetries. Wobbling oscillator and anharmonic Penning trap,” Russian J. Math. Phys. 24 (4), 483–489 (2016).

    MathSciNet  Google Scholar 

  12. E. V. Vybornyi, “Tunnel splitting of the spectrumand bilocalization of eigenfunctions in an asymmetric double well,” Teoret. Mat. Fiz. 178 (1), 107–130 (2014) [Theoret. and Math. Phys. 178 (1), 93–114 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  13. T. F. Pankratova, “Quasimodes and exponential splitting of a hammock,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 195, 103–112 (1991) [J. SovietMath. 62 (6), 3117–3122 (1992)].

    MathSciNet  Google Scholar 

  14. V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximation in Quantum Mechanics (Nauka, Moscow, 1976; Springer Science & BusinessMedia, 2001).

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 3: QuantumMechanics. Nonrelativistic Theory (Gos. Izdat. RSFSR, Leningrad, 1948; Pergamon, Oxford, 1958).

    Google Scholar 

  16. J. von Neumann and E. P. Wigner, “Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Zhurnal Physik 30, 467–470 (1929).

    MATH  Google Scholar 

  17. V. I. Arnol’d, “Modes and quasimodes,” Funktsional. Anal. Prilozhen. 6 (2), 12–20 (1972) [Functional Anal. Appl. 6 (2), 94–101 (1972). ]

    MathSciNet  MATH  Google Scholar 

  18. S. Keshavamurthy and P. Schlagheck, Dynamical Tunneling: Theory and Experiment (CRC Press, 2011).

    MATH  Google Scholar 

  19. M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003).

    Book  MATH  Google Scholar 

  20. J. LeDeunff and A. Mouchet, “Instantons re-examined: Dynamical tunneling and resonant tunneling,” Phys. Rev. E 81 (4), 046205 (2010).

    Article  MathSciNet  Google Scholar 

  21. S. Y. Dobrokhotov and A. Shafarevich, “Momentum tunneling between tori and the splitting of eigenvalues of the Laplace–Beltrami operator on Liouville surfaces,” Mathematical Physics, Analysis and Geometry 2 (2), 141–177 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. P. Maslov, “Global exponential asymptotics of solutions of tunnel equations and problems concerning large deviations,” Tr. Mat. Inst. Steklova 163, 150–180 (1984) [Proc. Steklov Inst. Math. 163, 177–209 (1985)].

    MATH  Google Scholar 

  23. S. Yu. Dobrokhotov, V. N. Kolokol’tsov, and V. P. Maslov, “Splitting of the lowest energy levels of the Schrödinger equation and asymptotic behavior of the fundamental solution of the equation hu t = h 2Δu/2 -V (x)u,” Teoret. Mat. Fiz. 87 (3), 561–599 (1991) [Theoret. and Math. Phys. 87 (3), 561–599 (1991)].

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Q. Liang and H. J. W. Müller-Kirsten, “Periodic instantons and quantum mechanical tunneling at high energy,” Phys. Rev. D 46 (10), 4685–4690 (1992).

    Article  Google Scholar 

  25. H. J. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (World Scientific, 2006).

    Book  MATH  Google Scholar 

  26. E. V. Vybornyi, “On the WKB method for difference equations: Weyl symbol and the phase geometry,” Nanostructures. Math. Phys. and Modelling 15 (2), 5–22 (2016).

    Google Scholar 

  27. P. Braun, “Discrete semiclassicalmethods in the theory of Rydberg atoms in external fields,” Rev. Mod. Phys. 65 (1), 115–161 (1993).

    Article  Google Scholar 

  28. P. Braun, “WKB method for three-term recursion relations and quasienergies of an anharmonic oscillator,” Teoret. Mat. Fiz. 37 (3), 355–370 (1978) [Theoret. and Math. Phys. 37 (3), 1070–1081 (1978)].

    MathSciNet  Google Scholar 

  29. O. Costin and R. Costin, “Rigorous WKB for finite-order linear recurrence relations with smooth coefficients,” SIAM J. Math. Anal. 27 (1), 110–134 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  30. E. V. Vybornyi, “Energy splitting in dynamical tunneling,” Teoret. Mat. Fiz. 181 (2), 337–348 (2014) [Theoret. and Math. Phys. 181 (2), 1418–1427 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Garg, “Application of the discreteWentzel–Kramers–Brillouinmethod to spin tunneling,” J. Math. Phys. 39 (10), 5166–5179 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. I: Symmetric configurations,” Phys. Rev. B 64 (9), 094413 (2001).

    Article  Google Scholar 

  33. A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. II: Asymmetric configurations,” Phys. Rev. B 64 (9), 094414 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Karasev.

Additional information

The article was submitted by the authors for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, M.V., Novikova, E.M. & Vybornyi, E.V. Non-Lie top tunneling and quantum bilocalization in planar Penning trap. Math Notes 100, 807–819 (2016). https://doi.org/10.1134/S0001434616110201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616110201

Keywords

Navigation