Skip to main content
Log in

An extremal problem for the derivative of a rational function

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Erdős’ well-known problem on the maximum absolute value of the derivative of a polynomial on a connected lemniscate is extended to the case of a rational function. Moreover, under the assumption that certain lemniscates are connected, a sharp upper bound for the absolute value of the derivative of a rational function at any point in the plane different from the poles is found. The role of the extremal function is played by an appropriate Zolotarev fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Hayman, Research Problems in Function Theory (Univ. of London, The Athlone Press, London, 1967).

    MATH  Google Scholar 

  2. P. Erdoš, “Some of My Favorite Unsolved Problems,” in A Tribute to Paul Erdös, Ed. by A. Baker, B. Bollobás, and A. Hajnal (Cambridge Univ. Press, Cambridge, 1990), pp. 467–478.

    Chapter  Google Scholar 

  3. Ch. Pommerenke, “On the derivative of a polynomial,” Michigan Math. J. 6 (4), 373–375 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Eremenko and L. Lempert, “An extremal problem for polynomials,” Proc. Amer. Math. Soc. 122 (1), 191–193 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Eremenko, “A Markov-type inequality for arbitrary plane continua,” Proc. Amer. Math. Soc. 135 (5), 1505–1510 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. N. Dubinin, “AMarkov-type inequality and a lower bound for the moduli of critical values of polynomials,” Dokl. Ross. Akad. Nauk 451 (5), 495–497 (2013) [Dokl. Math. 88 (1), 449–450 (2013)].

    Google Scholar 

  7. N. I. Akhiezer, Elements of the Theory of Elliptic Functions (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  8. A. B. Bogatyrev, “Chebyshev representation for rational functions,” Mat. Sb. 201 (11), 19–40 (2010) [Sb. Math. 201 (11), 1579–1598 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  9. A. B. Bogatyrev, How Many Zolotarev Fractions are There?, http://arxiv. org/abs/1511. 05346 (2015).

    Google Scholar 

  10. M. M. Gkhashim, V. N. Malozemov, and G. Sh. Tamasyan, Zolotarev Fractions, http://www. apmath. spbu. ru/cnsa/pdf/2016/Frac_Zolotarev_25feb2016.pdf (2016) [in Russian].

    Google Scholar 

  11. V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces,” Mat. Sb. 206 (1), 69–96 (2015) [Sb. Math. 206 (1), 61–86 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  12. V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory (Birkhäuser, Basel, 2014).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Dubinin.

Additional information

Original Russian Text © V. N. Dubinin, 2016, published in Matematicheskie Zametki, 2016, Vol. 100, No. 5, pp. 732–738.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, V.N. An extremal problem for the derivative of a rational function. Math Notes 100, 714–719 (2016). https://doi.org/10.1134/S0001434616110079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616110079

Keywords

Navigation