Skip to main content
Log in

On the application of linear positive operators for approximation of functions

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \) , the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Runovski and H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means,” J. Comput. Anal. Appl. 6 (3), 211–227 (2004).

    MathSciNet  MATH  Google Scholar 

  2. V. M. Tikhomirov, Approximation Theory (Izd. Moskov. Univ., Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  3. I. K. Daugavet, Introduction to the Theory of Approximation of Functions (Izd. Leningr. Univ., Leningrad, 1977) [in Russian].

    MATH  Google Scholar 

  4. P. P. Korovkin, Linear Operators and Approximation Theory (Fizmatlit, Moscow, 1959) [in Russian].

    MATH  Google Scholar 

  5. S. B. Gashkov, “The Fejér–Egervary–Szász inequality for nonnegative trigonometric polynomials,” in Mat. Prosveshch., Ser. 3 (Izd. MTs NMO, Moscow, 2005), Vol. 9, pp. 69–75 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Gashkov.

Additional information

Original Russian Text © S. B. Gashkov, 2016, published in Matematicheskie Zametki, 2016, Vol. 100, No. 5, pp. 689–700.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashkov, S.B. On the application of linear positive operators for approximation of functions. Math Notes 100, 666–676 (2016). https://doi.org/10.1134/S0001434616110031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616110031

Keywords

Navigation