Skip to main content
Log in

On the Kantorovich problem for nonlinear images of the Wiener measure

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The Kantorovich problem with the cost function given by the Cameron–Martin norm is considered for nonlinear images of the Wiener measure that are distributions of one-dimensional diffusion processes with nonconstant diffusion coefficients. It is shown that the problem can have trivial solutions only if the derivative of the diffusion coefficient differs from zero almost everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Bukin, “On theMonge and Kantorovich problems for distributions of diffusion processes,” Math. Notes 96 (5–6), 864–870 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. I. Bogachev, Gaussian Measures, in Math. Surveys Monogr. (Amer. Math. Soc., Providence, RI, 1998), Vol. 62.

  3. V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, in Math. Surveys Monogr. (Amer. Math. Soc., Providence, RI, 2010), Vol. 164.

  4. V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces,” in Real and Stochastic Analysis. Current Trends (World Sci. Publ., Hackensack, NJ, 2014), pp. 1–83.

    Chapter  Google Scholar 

  5. D. Feyel and A. S. Üstünel, “Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space,” Probab. Theory Related Fields 128 (3), 347–385 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Feyel and A. S. Üstünel, “Solution of the Monge–Ampère equation on Wiener space for general log-concave measures,” J. Funct. Anal. 232 (1), 29–55 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. I. Bogachev and A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and prospects,” Uspekhi Mat. Nauk 67 (5 (407)), 3–110 (2012) [Russian Math. Surveys 67 (5), 785–890 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  8. V. I. Bogachev and A. V. Kolesnikov, “On the Monge–Ampère equation in infinite dimensions,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (4), 547–572 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. I. Bogachev and A. V. Kolesnikov, “Sobolev regularity for the Monge–Ampère equation in the Wiener space,” Kyoto J. Math. 53 (4), 713–738 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Cavalletti, “The Monge problem in Wiener space,” Calc. Var. Partial Differential Equations 45 (1–2), 101–124 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Fang, J. Shao, and K. -Th. Sturm, “Wasserstein space over the Wiener space,” Probab. Theory Related Fields 146 (3–4), 535–565 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. I. Bogachev, A. V. Kolesnikov, and K. V. Medvedev, “Triangular transformations of measures,” Mat. Sb. 196 (3), 3–30 (2005) [Sb. Math. 196 (3), 309–335 (2005)].

    Article  MathSciNet  MATH  Google Scholar 

  13. I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes, (Nauka, Moscow, 1975; Springer-Verlag, Berlin–New York, 1979), Vol. III.

    MATH  Google Scholar 

  14. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes (North-Holland Publishing Co., Amsterdam–New York, Kodansha Ltd, Tokyo, 1981; Nauka, Moscow, 1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Bukin.

Additional information

Original Russian Text © D. B. Bukin, 2016, published in Matematicheskie Zametki, 2016, Vol. 100, No. 5, pp. 682–688.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukin, D.B. On the Kantorovich problem for nonlinear images of the Wiener measure. Math Notes 100, 660–665 (2016). https://doi.org/10.1134/S000143461611002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143461611002X

Keywords

Navigation