Skip to main content
Log in

On idempotent τ-measurable operators affiliated to a von Neumann algebra

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let τ be a faithful normal semifinite trace on a von Neumann algebra M, let p, 0 < p < ∞, be a number, and let L p (M, τ) be the space of operators whose pth power is integrable (with respect to τ). Let P and Q be τ-measurable idempotents, and let APQ. In this case, 1) if A ≥ 0, then A is a projection and QA = AQ = 0; 2) if P is quasinormal, then P is a projection; 3) if QM and AL p (M, τ), then A 2L p (M, τ). Let n be a positive integer, n > 2, and A = A nM. In this case, 1) if A ≠ 0, then the values of the nonincreasing rearrangement μ t (A) belong to the set {0} ∪ [‖A n−2−1, ‖A‖] for all t > 0; 2) either μ t (A) ≥ 1 for all t > 0 or there is a t 0 > 0 such that μ t (A) = 0 for all t > t 0. For every τ-measurable idempotent Q, there is aunique rank projection PM with QP = P, PQ = Q, and PM = QM. There is a unique decomposition Q = P + Z, where Z 2 = 0, ZP = 0, and PZ = Z. Here, if QL p (M, τ), then P is integrable, and τ(Q) = τ(P) for p = 1. If AL 1(M, τ) and if A = A 3 and AA 2M, then τ(A) ∈ R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. E. Segal, “A non-commutative extension of abstract integration,” Ann. Math. 57 (3), 401–457 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Nelson, “Notes on non-commutative integration,” J. Funct. Anal. 15 (2), 103–116 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  3. F. J. Yeadon, “Non-commutative L p-spaces,” Math. Proc. Cambridge Phil. Soc. 77 (1), 91–102 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Fack and H. Kosaki, “Generalized s-numbers of τ-measurable operators,” Pacific J. Math. 123 (2), 269–300 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. M. Bikchentaev, “On noncommutative function spaces,” in Selected Papers in K-Theory, Amer. Math. Soc. Transl. (2) (Amer. Math. Soc., Providence, RI, 1992), Vol. 154, pp. 179–187.

    Chapter  Google Scholar 

  6. P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, “Noncommutative Köthe duality,” Trans. Amer. Math. Soc. 339 (2), 717–750 (1993).

    MathSciNet  MATH  Google Scholar 

  7. L. G. Brown and H. Kosaki, “Jensen’s inequality in semifinite von Neumann algebras,” J. Operator Theory 23 (1), 3–19 (1990).

    MathSciNet  MATH  Google Scholar 

  8. I. Ts. Gohberg [Gokhberg] and M. G. Krein, Introduction to the Theory of Linear Non–Self-Adjoint Operators (Nauka, Moscow, 1965; AMS, Providence, RI, 1969).

    MATH  Google Scholar 

  9. A. M. Bikchentaev, “Concerning the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra,” Mat. Zametki 98 (3), 337–348 (2015) [Math. Notes 98 (3), 382–391 (2015)].

    Article  MathSciNet  Google Scholar 

  10. A. M. Bikchentaev, “On normal τ-measurable operators affiliated with semifinite von Neumann algebras,” Mat. Zametki 96 (3), 350–360 (2014) [Math. Notes 96 (3), 332–341 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  11. P. R. Halmos, A Hilbert Space Problem Book (D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, Ont.–London, 1967;Mir, Moscow, 1970).

    MATH  Google Scholar 

  12. A. M. Bikchentaev, “Local convergence in measure on semifinite von Neumann algebras,” in Trudy Mat. Inst. Steklov, Vol. 255: Function Spaces, Approximation Theory, Nonlinear Analysis (Nauka, Moscow, 2006), pp. 41–54 [Proc. Steklov. Inst.Math. 255, 35–48 (2006)].

    Google Scholar 

  13. A. M. Bikchentaev, “On representation of elements of a von Neumann algebra in the form of finite sums of products of projections,” Sib. Mat. Zh. 46 (1), 32–45 (2005) [Sib. Math. J. 46 (1), 24–34 (2005)].

    Article  MathSciNet  MATH  Google Scholar 

  14. J. J. Koliha, “Range projections of idempotents in C*-algebras,” Demonstratio Math. 24 (1), 91–103 (2001).

    MathSciNet  MATH  Google Scholar 

  15. A. M. Bikchentaev, “Trace and integrable operators affiliated with a semifinite von Neumann algebra,” Dokl. Ross. Akad. Nauk 466 (2), 137–140 (2016) [Dokl. Math. 93 (1), 16–19 (2016)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bikchentaev.

Additional information

Original Russian Text © A. M. Bikchentaev, 2016, published in Matematicheskie Zametki, 2016, Vol. 100, No. 4, pp. 492–503.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikchentaev, A.M. On idempotent τ-measurable operators affiliated to a von Neumann algebra. Math Notes 100, 515–525 (2016). https://doi.org/10.1134/S0001434616090224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616090224

Keywords

Navigation