Skip to main content
Log in

Conjugate variables in analytic number theory. Phase space and Lagrangian manifolds

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For an arithmetic semigroup (G, ), we define entropy as a function on a naturally defined continuous semigroup Ĝ containing G. The construction is based on conditional maximization, which permits us to introduce the conjugate variables and the Lagrangian manifold corresponding to the semigroup (G, ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Maslov and V. E. Nazaikinskii, “Disinformation theory for bosonic computational media,” Math. Notes 99 (6), 895–900 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. P. Maslov and V. E. Nazaikinskii, “Bose–Einstein distribution as a problemof analytic number theory: The case of less than two degrees of freedom,” Math. Notes 100 (2), 245–255 (2016).

    Article  Google Scholar 

  3. L. D. Landau and I. M. Lifshits, Theoretical Physics, Vol. 4: Statistical Physics (GITTL, Moscow–Leningrad, 1951) [in Russian].

    Google Scholar 

  4. A. G. Postnikov, Introduction to Analytic Number Theory (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  5. J. Knopfmacher, Abstract Analytic Number Theory (North-Holland, Amsterdam, 1975).

    MATH  Google Scholar 

  6. A. A. Karatsuba Fundamentals of Analytic Number Theory (URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  7. B. M. Bredikhin, “Elementary solution of inverse problems on bases of free semigroups,” Mat. Sb. 50 (92) (2), 221–232 (1960).

    MathSciNet  Google Scholar 

  8. A. Selberg “An elementary proof of the prime-number theorem,” Ann. Math. l50, 305–313 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. H. Hardy and S. Ramanujan “Asymptotic formulae in combinatory analysis,” Proc. London Math. Soc. (2) 17, 75–115 (1917).

    MathSciNet  MATH  Google Scholar 

  10. H. Rademacher, “On the partition function p(n),” Proc. London Math. Soc. (2) 43, 241–254 (1937).

    MathSciNet  MATH  Google Scholar 

  11. P. Erdős and J. Lehner, “The distribution of the number of summands in the partitions of a positive integer,” Duke Math. J. 8, 335–345 (1941).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. E. Andrews, The Theory of Partitions (Addison–Wesley, Reading, Mass., 1976).

    MATH  Google Scholar 

  13. H. Weyl, “Über die asymptotische Verteilung der Eigenwerte,” Göttinger Nachr., 110–117 (1911).

    Google Scholar 

  14. R. Courant, “Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik,” Math. Z. 7, 1–57 (1920).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Agmon, “Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators,” Arch. Rational Mech. Anal. 28, 165–183 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes,” Funktsional. Anal. i Prilozhen. 30 (2), 19–39 (1996) [Functional Anal. Appl. 30 (2), 95–105 (1996)].

    Article  MathSciNet  MATH  Google Scholar 

  17. A. M. Vershik, “Limit distribution of the energy of a quantum ideal gas from the viewpoint of the theory of partitions of natural numbers,” Uspekhi Mat. Nauk 52 (2), 139–146 (1997) [Russian Math. Surveys 52 (2), 379–386 (1997)].

    Article  MathSciNet  Google Scholar 

  18. A. M. Vershik, G. A. Freiman, and Yu. V. Yakubovich, “A local limit theorem for random strict partitions,” Teor. Veroyatnost. Primenen. 44 (3), 506–525 (1999) [Theory Probab. Appl. 44 (3) 453–468 (2000)].

    Article  MathSciNet  Google Scholar 

  19. V. P. Maslov, “On a general theorem of set theory leading to the Gibbs, Bose–Einstein, and Pareto distributions as well as to the Zipf–Mandelbrot law for the stock market,” Mat. Zametki 78 (6), 870–877 (2005) [Math. Notes 78 (5–6), 807–813 (2005)].

    Article  MATH  Google Scholar 

  20. V. P. Maslov, Quantum Economics (Nauka, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  21. V. P. Maslov and V. E. Nazaikinskii, “On the distribution of integer random variables related by a certain linear inequality, I,” Mat. Zametki 83 (2), 232–263 (2008) [Math. Notes 83 (1–2), 211–237 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  22. V. P. Maslov and V. E. Nazaikinskii, “On the distribution of integer random variables related by a certain linear inequality, II,” Mat. Zametki 83 (3), 381–401 (2008) [Math. Notes 83 (3–4), 345–363 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  23. V. P. Maslov and V. E. Nazaikinskii, “On the distribution of integer random variables related by a certain linear inequality, III,” Mat. Zametki 83 (6), 880–898 (2008) [Math. Notes 83 (5–6), 804–820 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  24. V. P. Maslov and V. E. Nazaikinskii, “On the rate of convergence to the Bose-Einstein distribution,” Math. Notes 99 (1–2), 95–109 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Maslov.

Additional information

The article was submitted by the authors for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, V.P., Nazaikinskii, V.E. Conjugate variables in analytic number theory. Phase space and Lagrangian manifolds. Math Notes 100, 421–428 (2016). https://doi.org/10.1134/S000143461609008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143461609008X

Keywords

Navigation