Skip to main content
Log in

Asymptotics of the Fourier sine transform of a function of bounded variation

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For the asymptotic formula for the Fourier sine transform of a function of bounded variation, we find a new proof entirely within the framework of the theory of Hardy spaces, primarily with the use of the Hardy inequality. We show that, for a function of bounded variation whose derivative lies in the Hardy space, every aspect of the behavior of its Fourier transform can somehow be expressed in terms of the Hilbert transform of the derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fridli, “Hardy Spaces Generated by an Integrability Condition,” J. Approx. Theory 113 (1), 91–109 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Liflyand and S. Tikhonov, “The Fourier transforms of general monotone functions,” in Analysis and Mathematical Physics, Trends in Math. (Birkhäuser, Basel, 2009), pp. 377–395.

    Google Scholar 

  3. A. M. Kopezhanova, E. D. Nursultanov, and L.-E. Persson, “On inequalities for the Fourier transform of functions from Lorentz spaces,” Mat. Zametki 90 (5), 785–788 (2011) [Math. Notes 90 (5), 767–770 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Liflyand, “Fourier transform versus Hilbert transform,” J. Math. Sci. 187, 49–56 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Liflyand, “Interaction between the Fourier transform and the Hilbert transform,” Acta Comment. Univ. Tartu. Math. 18 (1), 19–32 (2014).

    MathSciNet  MATH  Google Scholar 

  6. A. Iosevich and E. Liflyand, Decay of the Fourier Transform. Analytic and Geometric Aspects (Birkhäuser, Basel, 2014).

    MATH  Google Scholar 

  7. E. Liflyand, “Fourier transforms of functions from certain classes,” Anal. Math. 19 (2), 151–168 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Kober, “A note on Hilbert’s operator,” Bull. Amer. Math. Soc. 48 (1), 421–427 (1942).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Liflyand and S. Tikhonov, “Weighted Paley–Wiener theorem on the Hilbert transform,” C. R. Acad. Sci. Paris 348 (23-24), 1253–1258 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. A. Telyakovskii, “Conditions for the integrability of trigonometric series and their application to the study of linear summation methods for Fourier series,” Izv. Akad. Nauk SSSR Ser. Mat. 28 (6), 1209–1236 (1964).

    MathSciNet  Google Scholar 

  11. R. M. Trigub, “On integral norms for polynomials,” Mat. Sb. [Math. USSR-Sb. ] 101 (143) (3 (11)), 315–333 (1976) [Math. USSR-Sb. 30 (3), 279–295 (1976)].

    MathSciNet  Google Scholar 

  12. G. E. Shilov, “On the Fourier coefficient of a class of continuous functions,” Dokl. Akad. Nauk SSSR 35, 3–7 (1942).

    MathSciNet  MATH  Google Scholar 

  13. R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions (Springer Netherlands, 2004).

    Book  Google Scholar 

  14. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, in North-Holland Math. Stud. (North-Holland Publ., Amsterdam, 1985), Vol. 116.

    MATH  Google Scholar 

  15. F. W. King, Hilbert Transforms, Vols. 1, 2 (Cambridge Univ. Press, Cambridge, 2009).

    Book  MATH  Google Scholar 

  16. D. Borwein, “Linear functionals connected with strong Cesáro summability,” J. London Math. Soc. 40, 628–634 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. A. Fomin, “On a class of trigonometric series,” Mat. Zametki 23 (2), 213–222 (1978).

    MathSciNet  Google Scholar 

  18. D. V. Giang and F. Móricz, “On the L1 theory of Fourier transforms and multipliers,” Acta Sci. Math. (Szeged) 61 (1-4), 293–304 (1995).

    MathSciNet  MATH  Google Scholar 

  19. C. S. Herz, “Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms,” J. Math. Mech. 18, 283–323 (1968).

    MathSciNet  MATH  Google Scholar 

  20. T. M. Flett, “Some elementary inequalities for integrals with applications to Fourier transforms,” Proc. London Math. Soc. (3) 29, 538–556 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Lerner and E. Liflyand, “Interpolation properties of a scale of spaces,” Collect. Math. 54 (2), 153–161 (2003).

    MathSciNet  MATH  Google Scholar 

  22. G. Alexits, Convergence Problems of Orthogonal Series, in Int. Ser. Monogr. Pure Appl. Math. (Pergamon Press, New York, 1961), Vol. 20.

    Google Scholar 

  23. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, in Princeton Math. Ser. (Princeton Univ. Press, Princeton, NJ, 1971), Vol. 32.

    Google Scholar 

  24. A. Beurling, “On the spectral synthesis of bounded functions,” Acta Math. 81, 225–238 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  25. E. S. Belinsky, E. R. Liflyand, and R. M. Trigub, “The Banach algebra A* and its properties,” J. Fourier Anal. Appl. 3 (2), 103–129 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. V. Giang and F. Móricz, “Lebesgue integrability of double Fourier transforms,” Acta Sci. Math. (Szeged) 58 (1-4), 299–328 (1993).

    MathSciNet  MATH  Google Scholar 

  27. E. Liflyand, “Multiple Fourier transforms and trigonometric series in line with Hardy’s variation,” Contemp. Math. 659, 135–155 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Liflyand.

Additional information

Original Russian Text © E. R. Liflyand, 2016, published in Matematicheskie Zametki, 2016, Vol. 100, No. 1, pp. 109–117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liflyand, E.R. Asymptotics of the Fourier sine transform of a function of bounded variation. Math Notes 100, 93–99 (2016). https://doi.org/10.1134/S0001434616070087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616070087

Keywords

Navigation