F. S. Rofe-Beketov and A. M. Kholkin, Spectral Analysis of Differential Operators. Interplay Between Spectral and Oscillatory Properties, inWorld Sci. Monogr. Ser. inMath. (World Sci., Singapore, 2005), Vol. 7.
Book
MATH
Google Scholar
V. I. Gorbachuk and M. L. Gorbachuk, Boundary-Value Problems for Operator-Differential Equations (Naukova Dumka, Kiev, 1984) [in Russian].
MATH
Google Scholar
A. M. Savchuk and A. A. Shkalikov, “Sturm-Liouville operators with distribution potentials,” in Trudy Moskov. Mat. Obshch. (MTsNMO, Moscow, 2003), Vol. 64, pp. 159–212 [Trans. Moscow Math. Soc. 2003, 143–192 (2003)].
Google Scholar
K. A. Mirzoev and T. A. Safonova, “Singular Sturm-Liouville operators with distribution potential on spaces of vector functions,” Dokl. Ross. Akad. Nauk 441 (2), 165–168 (2011) [Dokl. Math. 84 (3), 791–794 (2011)].
MathSciNet
MATH
Google Scholar
K. A. Mirzoev and T. A. Safonova, “Singular Sturm-Liouville operators with nonsmooth potentials in a space of vector functions,” Ufim. Mat. Zh. 3 (3), 105–119 (2011).
MathSciNet
MATH
Google Scholar
K. A. Mirzoev, “Sturm-Liouville operators,” in Trudy Moskov. Mat. Obshch. (MTsNMO, Moscow, 2014), Vol. 75, pp. 335–359 [Trans. MoscowMath. Soc. 2014, 281-299 (2014)].
Google Scholar
J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials,” OpusculaMath. 33 (3), 467–563 (2013).
MathSciNet
MATH
Google Scholar
J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, “Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials,” J. Spectr. Theory 4 (4), 715–768 (2014).
MathSciNet
Article
MATH
Google Scholar
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, With an appendix by P. Exner, 2nd ed. (Amer. Math. Soc., Providence, RI, 2004).
Book
MATH
Google Scholar
A. C. Kostenko and M. M. Malamud, “One-dimensional Schrödinger operator with d-interactions,” Funktsional. Anal. Prilozhen. 44 (2), 87–91 (2010) [Functional Anal. Appl. 44 (2), 151–155 (2010)].
MathSciNet
Article
MATH
Google Scholar
A. S. Kostenko and M. M. Malamud, “1–D Schrödinger operators with local point interactions on discrete set,” J. Differential Equations 249 (2), 253–304 (2010).
MathSciNet
Article
MATH
Google Scholar
S. Albeverio, A. Kostenko, and M. Malamud, “Spectral theory of semi-bounded Sturm–Liouville operators with local interactions on a discrete set,” J. Math. Phys. 51 (102102) (2010).
MathSciNet
Article
MATH
Google Scholar
A. Kostenko and M. Malamud, “1–D Schrödinger operators with local point interactions: a review,” in Spectral Analysis, Differential Equations, and Mathematical Physics: a Festschrift in Honor of Fritz Gesztesy’s 60th Birthday, Proc. Symp. Pure Math. (Amer. Math. Soc., Providence, RI, 2013), Vol. 87, pp. 235–262.
Google Scholar
V. A. Derkach and M. M. Malamud, “Generalized resolvents and the boundary value problems for hermitian operators with gaps,” J. Funct. Anal. 95 (1), 1–95 (1991).
MathSciNet
Article
MATH
Google Scholar
M. M. Malamud, “Certain classes of extensions of a lacunary Hermitian operator,” Ukrain. Mat. Zh. 44 (2), 215–233 (1992) [Ukrainian Math. J. 44 (2), 190–204 (1992)].
MathSciNet
Article
MATH
Google Scholar
N. I. Akhiezer, Classical Moment Problem and Related Questions of Analysis (Fizmatgiz, Moscow, 1961) [in Russian].
MATH
Google Scholar
Yu. M. Berezanskii, Eigenfunction Expansion of Self-Adjoint Operators (Naukova Dumka, Kiev, 1965) [in Russian].
MATH
Google Scholar
A. G. Kostyuchenko and K. A. Mirzoev, “Three-term recurrence relations with matrix coefficients. The completely indefinite case,” Mat. Zametki 63 (5), 709–716 (1998) [Math. Notes 63 (5–6), 624–630 (1998)].
MathSciNet
Article
MATH
Google Scholar
A. G. Kostyuchenko and K. A. Mirzoev, “Generalized Jacobi matrices and deficiency indices of ordinary differential operators with polynomial coefficients,” Funktsional. Anal. Prilozhen. 33 (1), 30–45 (1999) [Functional Anal. Appl. 33 (1), 25–37 (1999)].
MathSciNet
Article
MATH
Google Scholar
A. G. Kostyuchenko and K. A. Mirzoev, “Complete indefiniteness tests for Jacobi matrices with matrix entries,” Funktsional. Anal. Prilozhen. 35 (4), 32–37 (2001) [Functional Anal. Appl. 35 (4), 265–269 (2001)].
MathSciNet
Article
MATH
Google Scholar
M. Malamud and H. Neidhardt, “Sturm-Liouville boundary value problems with operator potentials and the unitary equivalence,” J. Differential Equations 252 (11), 5875–5922 (2011).
MathSciNet
Article
MATH
Google Scholar
R. Carlone, M. Malamud, and A. Posilicano, “On the spectral theory of Gesztezy–S? eba realizations of 1-D Dirac operators with point interactions on discrete set,” J. Differential Equations 254, 3835–3902 (2013).
MathSciNet
Article
MATH
Google Scholar
Yu. M. Dyukarev, “Deficiency numbers of symmetric operators generated by block Jacobi matrices,” Mat. Sb. 197 (8), 73–100 (2006) [Sb. Math. 197 (8), 1177–1203 (2006)].
MathSciNet
Article
MATH
Google Scholar
Yu. M. Dyukarev, “Examples of block Jacobimatrices generating symmetric operators with arbitrary possible values of the deficiency numbers,” Mat. Sb. 201 (12), 83–92 (2010) [Sb. Math. 201 (12), 1791–1800 (2010)].
MathSciNet
Article
Google Scholar
V. I. Kogan, “Operators that are generated by Ip-matrices in the case of maximal deficiency indices,” Teor. Funktsii Funktsional. Anal. i Prilozhen. 11, 103–107 (1970).
Google Scholar
M. Reed and B. Simon, Methods ofModernMathematical Physics, Vol. 3: Scattering Theory (Academic Press, New York, 1978; Mir, Moscow, 1982).
Google Scholar