Skip to main content
Log in

Jacobi-type differential relations for the Lauricella function F (N) D

  • Short Communications
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For the generalized Lauricella hypergeometric function F (N) D , Jacobi-type differential relations are obtained and their proof is given. A new system of partial differential equations for the function F (N) D is derived. Relations between associated Lauricella functions are presented. These results possess a wide range of applications, including the theory of Riemann–Hilbert boundary-value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili,” Rendiconti Circ. Math. Palermo 7, 111–158 (1893), Suppl. 1.

    Article  Google Scholar 

  2. E. Picard, “Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques,” Ann. Sci. école Norm. Sup. (2) 10, 305–322 (1881).

    Google Scholar 

  3. P. Appel and J. Kampéde Feriet, Fonctions hypergéometriques et hypersphérique (Gauthier–Villars, Paris, 1926).

    Google Scholar 

  4. A. Erdélyi, “Hypergeometric functions of two variables,” ActaMath. 83, 131–164 (1950).

    MathSciNet  MATH  Google Scholar 

  5. O. M. Olson, “Integration of the partial differential equations for the hypergeometric function F1 and FD of two and more variables,” J.Math. Phys. 5 (3), 420–430 (1964).

    Article  Google Scholar 

  6. H. Exton, Multiple Hypergeometric Functions and Application (JohnWiley & Sons, New York, 1976).

    MATH  Google Scholar 

  7. P. Deligne and G. D. Mostow, “Monodromy of hypergeometric functions and nonlattice integral monodromy,” Publ.Math. Inst. Hautes étud. Sci. 63, 5–89 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Miller, Symmetry Separation of Variables (Addison–Wesley, Reading (USA), 1977; Mir, Moscow, 1981).

    Google Scholar 

  9. K. Iwasaki, H. Kimura, Sh. Shimomura, and M. Yoshida, From Gauss to Painlevé. A Modern Theory of Special Functions, in Aspects of Math. (Friedrich Vieweg & Sohn, Braunschweig, 1991), Vol. E16.

    MATH  Google Scholar 

  10. M. E. H. Ismail and J. Pitman, “Algebraic evaluations of some Euler integrals, duplication formulae for Appell’s hypergeometric function F1, and Brownian variations,” Canad. J. Math. 52 (5), 961–981 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. V. Kraniotis, General Relativity, Lauricella’s Hypergeometric Function FD, and the Theory of Braids, arXiv: 0709.3391 (2007).

    Google Scholar 

  12. R. R. Gontsov, “On movable singularities of Garnier systems,” Mat. Zametki 88 (6), 845–858 (2010) [Math. Notes 88 (5–6), 806–818 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  13. T. A. Driscoll and L. N. Trefethen, Schwarz–Christoffel Mapping, in CambridgeMonogr. Appl. Comput. Math. (Cambridge Univ. Press, Cambridge, 2002), vol. 8.

  14. S. I. Bezrodnykh and V. I. Vlasov, “The singular Riemann–Hilbert problem in the complicated domains,” Spectral and Evolution Problems 16, 112–118 (2006).

    Google Scholar 

  15. C. G. J. Jacobi, “Untersuchungen Über die Differentialgleichungen der hypergeometrischen Reihe,” J. Reine Angew. Math. 56, 149–165 (1859).

    Article  MathSciNet  Google Scholar 

  16. E. G. C. Poole, Introduction to the Theory of Linear Differential Equations (Clarendon Press, Oxford, 1936).

    MATH  Google Scholar 

  17. H. Bateman and A. Erdélyi, Higher Transcendental Functions, vol. 1: The Hypergeometric Function, Legendre Functions (McGraw–Hill, New York–Toronto–London, 1953; Nauka, Moscow, 1973 (2nd ed.)).

    MATH  Google Scholar 

  18. S. I. Bezrodnykh, “A Jacobi-type relation for the generalized hypergeometric function,” in III International Conference “Mathematical Ideas of P. L. Chebyshev and Their Application to Modern Problems of Natural Science”, Obninsk, May 14–18, 2006, Abstracts of papers (2006), pp. 18–19 [in Russian].

    Google Scholar 

  19. S. I. Bezrodnykh, “Analytic continuation formulas and Jacobi-type relations for the Lauricella function,” Dokl. Ross. Akad. Nauk 467 (1), 7–12 (2016) [Dokl.Math 93 (2), 129–134 (2016)].

    Google Scholar 

  20. S. I. Bezrodnykh, Singular Riemann–Hilbert Problem and Its Application, Cand. Sci. (Phys.–Math.) Dissertation (Computer Center, Russian Academy of Sciences, Moscow, 2006) [in Russian].

    Google Scholar 

  21. S. I. Bezrodnykh and V. I. Vlasov, “Singular Riemann-Hilbert problem in complex-shaped domains,” Zh. Vychisl. Mat. i Mat. Fiz. 54 (12), 1904–1953 (2014) [Comput. Math. Math. Phys. 54 (12), 1826–1875 (2014)].

    MathSciNet  MATH  Google Scholar 

  22. S. I. Bezrodnykh, V. I. Vlasov„ and B. V. Somov, “Generalized Analytic Models of the Syrovatskii Current Layer,” Astronomy Letters 37 (2), 113–130 (2011).

    Article  Google Scholar 

  23. S. I. Bezrodnykh and B. V. Somov, “An analysis of the magnetic field and the magnetosphere of a neutron star under the effect of a shock wave,” Adv. in Space Res. 56, 964–969 (2015).

    Article  Google Scholar 

  24. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Pt. 2: Transcendental Functions (Cambridge Univ. Press, Cambridge, 1996; Editorial URSS, Moscow, 2002).

    Google Scholar 

  25. P. Appel, “Sur les fonctions hypergéométriques de deux variables,” J. Math. Pure Appl. (3) 8, 173–216 (1882).

    Google Scholar 

  26. V. I. Vlasov, Boundary-Value Problems inDomainswith Curvilinear Boundary, Doctoral (Phys.–Math.) Dissertation (Computer Center, AN SSSR, Moscow, 1990) [in Russian].

    Google Scholar 

  27. S. I. Bezrodnykh, “On the analytic continuation of the Lauricella function,” in International Conference on Differential Equations and Dynamical Systems, Suzdal, June 27–July 2, 2008, Abstracts of papers (2008), pp. 34–36 [in Russian].

    Google Scholar 

  28. Yu. A. Brychkov and N. Saad, “Some formulas for the Appell function F1(a, b, b; c; w, z),” Integral Transforms Spec. Funct. 23 (11), 793–802 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Riemann, “Beiträge zur Theorie der durch die Gaußs’sche Reihe F(a, ß, x) darstellbaren Functionen,” Abh. Kön. Ges. d. Wiss. zu Göttingen VII (1857), http:// wwwemisde/classics/Riemann/ PFunctpdf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Bezrodnykh.

Additional information

Original Russian Text © S. I. Bezrodnykh, 2016, published in Matematicheskie Zametki, 2016, Vol. 99, No. 6, pp. 832–847.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrodnykh, S.I. Jacobi-type differential relations for the Lauricella function F (N) D . Math Notes 99, 821–833 (2016). https://doi.org/10.1134/S0001434616050205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616050205

Keywords

Navigation