Skip to main content
Log in

Asymptotic solutions of a magnetohydrodynamic system which describe smoothed discontinuities

  • Short Communications
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Asymptotic solutions of a nonlinear magnetohydrodynamic system rapidly varying near moving surfaces are described. It is shown that the motion of jump surfaces is determined from a free boundary problem, while the main part of the asymptotics satisfies a system of equations on the moving surface. In the “nondegenerate” case, this system turns out to be linear, while, under the additional condition that the normal component of the magnetic field vanishes, it becomes nonlinear. In the latter case, the small magnetic field instantaneously increases to a value of order 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, in Appl. Math. Sci. (Springer-Verlag, New York, 1998), vol. 125.

  2. V. I. Arnold, “Some remarks on the antidynamo theorem,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 5, 50–57 (1982) [Moscow Univ.Math. Bull. 37 (6), 57–66 (1982)].

    MathSciNet  Google Scholar 

  3. V. I. Arnold and E. I. Korkina, “Growth of the magnetic field in three-dimensional steady flow of incompressible fluid,” VestnikMoskov.Univ. Ser. IMat.Mekh., No. 3, 43–46 (1983).

    MATH  Google Scholar 

  4. V. I. Arnold, Ya. B. Zel’dovich, A. A. Ruzmaikin, and D. D. Sokolov, “The magnetic field in stationary flow with extensions in Riemannian space,” Zh. Exper. Teor. Fiz. 11 (6), 2052–2058 (1981).

    Google Scholar 

  5. S. Childress, “Fast dynamo theory,” in Topological Aspects of the Dynamics of Fluids and Plasmas, NATOAdv. Sci. Inst. Ser. EAppl. Sci. (Kluwer Acad. Publ., Dordrecht, 1992), Vol. 218, pp. 111–147.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Yu. Dobrokhotov, V. M. Olive, A. A. Ruzmaikin, and A. I. Shafarevich, “Magnetic field asymptotics in a well conducting fluid,” Geophys. Astrophys. Fluid Dynam. 82 (3–4), 255–280 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. B. Zeldovich, A. A. Ruzmaikin, and D. Sokolov, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).

    Google Scholar 

  8. H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluid (Cambridge Univ. Press,Z Cambridge, 1978).

    Google Scholar 

  9. M. M. Vishik, “Magnetic field generation by the motion a highly conducting fluid,” Geophys. Astrophys. Fluid Dynam. 48 (1–3), 151–167 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. I. Shafarevich, “The behavior of themagnetic field in a conducting fluidwith a rapidly varying velocity field,” Dokl. Ross. Akad. Nauk Russian Academy of Sciences 360, 31–33 (1998) [Dokl. Math. 57 (3) 464–466 (1998)].

    MathSciNet  MATH  Google Scholar 

  11. A. I. Esina and A. I. Shafarevich, “Delta-type solutions for the system of induction equations with discontinuous velocity field,” Methods Funct. Anal. Topology 20 (1), 17–33 (2014).

    MathSciNet  MATH  Google Scholar 

  12. A. I. Allilueva and A. I. Shafarevich, “Delta-type solutions for the non-Hermitian system of induction equations,” Internat. J. Theoret. Phys. 15 (11), 3932–3944 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. V. Kucherenko and A. Kryvko, “Interaction Alfven waves in the linearized magnetohydrodynamic system for an incompressible ideal fluid,” Russ. J. Math. Phys. 20 (1), 56–67 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. P. Maslov, Complex WKB Method in Nonlinear Equations, in Nonlinear Analysis and Its Applications (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  15. S. Yu. Dobrokhotov and V. P. Maslov, “Finite-zone, almost-periodic solutions in WKB approximations,” in Itogi Nauki Tekh., Ser. Sovrem. Probl.Mat. (VINITI, Moscow, 1980), Vol. 15, pp. 3–94 [J. Sov. Math. 16, 1433–1487 (1981)].

    MathSciNet  MATH  Google Scholar 

  16. A. Fridman, Partial Differential Equations of Parabolic Type (Moscow, Nauka, 1968) [in Russian].

    Google Scholar 

  17. V. P. Maslov, Asymptotic Methods of Solution of Pseudodifferential Equations (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  18. A. I. Shafarevich, “Differential equations on graphs describing asymptotic solutions of the Navier–Stokes equations localized in a small neighborhood of a curve,” Differ. Uravn. 34 (8), 1119–1130 (1998) [Differ. Equations 34 (8), 1124–1134 (1998)].

    MathSciNet  MATH  Google Scholar 

  19. V. P. Maslov and A. I. Shafarevich, “Rapidly oscillating asymptotic solutions of the Navier–Stokes equations, coherent structures, Fomenko invariants, Kolmogorov spectrum, and flicker noise,” Russ. J. Math. Phys. 13 (4), 414–424 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. I. Shafarevich, “The Navier–Stokes equations: Asymptotic solutions describing tangential discontinuities,” Mat. Zametki 67 (6), 938–949 (2000) [Math. Notes 67 (5–6), 792–801 (2000)].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Allilueva.

Additional information

Original Russian Text © A. I. Allilueva, A. I. Shafarevich, 2016, published in Matematicheskie Zametki, 2016, Vol. 99, No. 6, pp. 803–819.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allilueva, A.I., Shafarevich, A.I. Asymptotic solutions of a magnetohydrodynamic system which describe smoothed discontinuities. Math Notes 99, 795–809 (2016). https://doi.org/10.1134/S0001434616050187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616050187

Keywords

Navigation